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An Energy-Based Model of
Longitudinal Splitting in
Unidirectional Fiber-Reinforced
Composites
Unidirectional fiber-reinforced composites are often observed to fail in a longitud
splitting mode in the fiber direction under far-field compressive loading with weak lat
confinement. An energy-based model is developed based on the principle of min
potential energy and the evaluation of effective properties to obtain an analytical app
mation to the critical stress for longitudinal splitting. The analytic estimate for the co
pressive strength is used to illustrate its dependence on material properties, su
energy, fiber volume fraction, fiber diameter, and lateral confining pressure. The pr
tions of the model show good agreement with available experimental data.
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1 Introduction

Fiber-reinforced composite materials are used in the form
laminates in numerous structural applications by taking advan
of their directional properties. Such applications are often limi
by the compressive strength of the composite materials that
used. Failure modes in composite laminates are complex and
not always easily understood~e.g.,@1,2#!. On the other hand, uni
directional fiber-reinforced composites serve as excellent mo
materials for investigating the associated strength and failure
sues. Unidirectional fiber-reinforced composites also have m
lower compressive strength than their tensile strength for load
in the fiber direction. Therefore, the prediction of the compress
strength is a critical issue in designing composite materials
composite structures. Commonly observed failure modes in
directional composites under compression in the fiber direc
include ~i! longitudinal or axial splitting due to transverse crac
ing, ~ii ! fiber kinking ~initiation and propagation of kink bands o
microbuckles!, and ~iii ! longitudinal splitting followed by fiber
kinking ~see for e.g.,@2,3#!. These failure modes are also observ
under axial compression in the presence of lateral confinem
However, the mechanisms, which govern these failure mode
composites, are not completely understood. The effect of lat
confinement on compressive strength is an outstanding issue
cause of its relevance in developing and validating existing p
nomenological failure models for composites~e.g.,@4,5#!. Also, in
composite laminates, even under uniaxial compression, the s
state is multiaxial, and hence there is a need for models that
reliably predict their strength under multiaxial stress states.
the kinking mode of failure, a wide range of experimental, a
lytical, computational efforts have been undertaken~e.g.,@2,3,6–
9#!. On the other hand, relatively little is known about longitudin
splitting due to transverse cracking. A number of researchers h
observed an increase in the compressive strength with increa
lateral confinement~e.g.,@10–12#!. Further, from a materials de
sign point of view, it is desirable to have models that can pred

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
9, 1999; final revision, Dec. 7, 1999. Associate Technical Editor: K. T. Rame
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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the strength of the composites in terms of the properties of fib
matrix, and their interface. Motivated by these experimental
servations and the current lack of satisfactory models for long
dinal ~axial! splitting in composites~with an exception in the work
by @9#!, a new energy-based approach for predicting compres
strength of unidirectional fiber reinforced composites has b
developed and is presented here.

One way to investigate the longitudinal splitting under co
pression is to compute the energy release rate and track the
lution of dominant microcracks in the composites. However,
stress field and the evolution law for a crack embedded in a hig
heterogeneous material such as fiber-reinforced composites i
tremely complicated and hence a satisfactory analytic appro
appears not to be plausible in this case. In this paper, an ener
approach similar to the one that has been used for studying a
splitting in isotropic brittle solids such as ceramics~@13#! is em-
ployed to gain insights into longitudinal splitting phenomena
fiber-reinforced composites. By combining the principle of min
mum potential energy and the effective properties of the comp
ite, an energy-based criterion for longitudinal splitting of unid
rectional fiber-reinforced composite is established. Hashin@14#
has used a similar approach in determining the energy release
for fracture in laminated composites.

Due to the heterogeneity and anisotropy of the fiber-reinfor
composite, excessive elastic energy is stored in the compo
under compression. Longitudinal splitting can be regarded a
process in which the excessive elastic energy is released thr
the formation of new surfaces. Therefore, when the reduction
the stored elastic energy by splitting compensates the surface
ergy, the specimen splits. This energy-based failure criterion c
bined with the effective properties of the composite based on
elastic properties of the matrix and the fiber provides an analyt
expression for the critical stress~compressive strength! for longi-
tudinal splitting. This expression illustrates the effect of mater
properties, surface energy, fiber volume fraction, fiber diame
and lateral confining pressure on the critical axial compress
stress for longitudinal splitting. The model predictions are co
pared with available experimental results in the literatu
~@10,11,15#! and show good agreement. The predictions bre
down for large confining pressures due to failure mode transi
to kinking which is not accounted for in the present model.
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2 Energy-Based Model for Longitudinal Splitting

2.1 Problem Formulation. Consider a cylindrical specimen
of an ideal1 unidirectional fiber-reinforced composite under later
confining stress,sc , and axial compressive stress,s, shown sche-
matically in Fig. 1~a!. Under this setting, compare two configura
tions shown in Fig. 1:~a! one is unsplit, and~b! the other is totally
split in the fiber direction. Let the total potential energy density
unsplit and split specimen bePu andPs , respectively. Compari-
son betweenPu andPs provides the critical axial stress for split
ting under given lateral confining stress,sc . The criterion for
longitudinal splitting is the minimization of the total potential en
ergy density of the specimen. In other words, whenPu exceeds
Ps , the specimen splits~@13#!.

The total potential energy is computed in terms of the effect
material properties as a function of the properties of fiber a
matrix using the concept of representative volume element~RVE!.
Instead of considering the entire problem, an auxiliary problem
set up focusing on an element~RVE! which consists of a fiber
surrounded by the matrix according to the volume fraction un
the same strain or stress boundary condition as that of the orig
problem. If the specimen is macroscopically homogeneous,
average strain and stress over the RVE are the same as that o
entire specimen. In the problem under consideration, becaus
the random in-plane distribution of the fibers, the RVE reduces
a circular cylinder which consists of a single straight fiber of t
specimen length surrounded with matrix according to the fi
volume fraction. The issues related to establishing RVEs in fib
reinforced composites are well established~e.g.,@16–18#!.

2.2 Energy Criterion for Longitudinal Splitting

2.2.1 Total Potential Energy of Unsplit Specimen.The total
potential energy density of the unsplit specimen,Pu , is the same
as the elastic energy density. Hence, under stress~traction! bound-
ary condition,Pu is given as follows:

Pu5
1

V E
V
H 1

2
«~x!:C~x!:«~x!2s~x!:«~x!J dx

5
1

V E
V
H 2

1

2
s~x!:S~x!:s~x!J dx52

1

2
s̄:S* :s̄ (2.1)

whereV is the volume of the RVE,C(x) andS(x) are the fourth-
order elasticity and compliance tensors at pointx, respectively,
«(x) is the strain field,s(x) is the stress field, ands̄ is the
volumetric average stress tensor overV which corresponds to the
prescribed stress on the boundary of the specimen.S* is the ef-
fective compliance tensor of the unsplit specimen.

1The fibers of the same diameter are aligned and homogeneously distributed
plane (x22x3) perpendicular~transverse! to the fiber direction (x1).

Fig. 1 Schematics of unsplit and longitudinally split configu-
rations of a unidirectional fiber composite
438 Õ Vol. 67, SEPTEMBER 2000
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Because of the unidirectional reinforcement of the fibers,
specimen is transversely isotropic. Besides, the cartesian co
nates,x1 , x2 , andx3 directions are also the principal direction
Therefore, to evaluatePu , we need only four independent effec
tive moduli, namely, the longitudinal Young’s modulus,E1* ,
Poisson ratio,n21* , the plane strain bulk modulus,K23* and the
shear modulus,G23* . Using the cylindrical RVE introduced be
fore, effective elastic moduli of the unidirectional composite f
random in-plane distribution of fibers,E1* ,n21* ,K23* , and the upper
and lower bounds forG23* have been obtained by Hashin an
Rosen@16#. Since the lower bound corresponds to the mac
stress prescribed problem, the lower bound forG23* is used here.
The expressions for the moduli tensor and related elasticity c
stants are shown in the Appendix in terms of the elastic const
of the fiber and the matrix as well as their volume fractions.

The average stress-strain relation for the RVE is given
follows:2

s̄115C11* «̄111C12* «̄221C12* «̄33

s̄225C12* «̄111C22* «̄221C23* «̄33 (2.2)

s̄335C12* «̄111C23* «̄221C22* «̄33

The prescribed stress boundary conditions are

s̄1152s s̄225s̄3352sc s̄125s̄135s̄2350 (2.3)

where s and sc are the magnitudes of the axial stress and
lateral confinement. Compressive stress components are ass
to be negative. The total potential energy density for the uns
specimen,Pu , is a quadratic form of the compressive stress,s,

Pu52
1

2 F 2s
2sc

2sc

G TF C11* C12* C12*

C12* C22* C23*

C12* C23* C22*
G 21F 2s

2sc

2sc

G
5

~C22* 1C23* !s224C12* scs12C11* sc
2

4C12*
222C11* ~C22* 1C23* !

52
1

2 H s2

E1*
1

4n21* scs

E1*
1S 1

K23*
1

4n21*
2

E1*
Dsc

2J . (2.4)

2.2.2 Total Potential Energy of Split Specimen.Under the
same boundary condition as that of the unsplit specimen~2.3! and
assuming thateachRVE splits at the boundary of the matrix an
the fiber, i.e., the split is caused by an interfacial crack~delami-
nation!, the split RVE can be regarded as two columns, consis
of either the fiber or the matrix. Such a simplifying assumpti
enables gaining insights into the strength of composites. The e
tic energy density of the RVE after splitting,Es , is given by

Es5
1

V E
V
H 2

1

2
s~x!:S~x!:s~x!J dx

52
1

2
s̄:S* :s̄52

1

2
s̄:~v fSf1vmSm!:s̄ (2.5)

whereS* is the effective compliance tensor of the split specime
v f ,vm are volume fractions of fiber and matrix, respectively. T
matrix volume fractionvm is assumed throughout to be (12v f).

The fiber and the matrix are assumed to be isotropic and
compliance tensor of fiber and matrix,Sf ,Sm can be expressed in
terms of their respective Young’s moduli (Ef ,Em) and Poisson’s
ratios (n f ,nm). Therefore, the elastic energy density for the sp
specimen,Es , is given as a quadratic form of the axial compre
sive stress,s

n the
2Expressions forC11* ,C12* ,C22* ,C23* are shown in the Appendix.
Transactions of the ASME
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Es52
1

2
s̄:~v fSf1vmSm!:s̄

52
1

2 F v f

Ef
$s224n fssc12~12n f !sc

2%1
~12v f !

Em

3$s224nmssc12~12nm!sc
2%G . (2.6)

The surface energy per unit volume,G, of the RVE due to
splitting can be obtained by introducing a surface energy per
area,g

G5
2gA

V
5

2g~2pah!

pR2h
5

4gv f

a
(2.7)

whereA is the lateral surface area of a fiber in the RVE,a is the
radius of the fiber, andR is the radius of the RVE. Note thatG
~2.7! is independent of the height of the RVE,h, the height of the
specimen. The surface energyg can be interpreted as the energ
release rate (Gc52g) for interfacial crack initiation along the
fiber-matrix interface or delamination~@19#! and the failure is as-
sumed to proceed catastrophically following initiation~@20#!. The
relationship between the energy release rateG, and the local stress
intensity factorsK I andK II and the phase angle can be found
Liu et al. @19#.

In the present analysis, the surface energy per unit area,g, is
assumed to be a constant~i.e., g is independent ofs andsc!. In
reality, as confining pressuresc increases, the resistance to long
tudinal ~axial! splitting or delamination failure increases conside
ably and hence, the fracture energy,Gc or g. Even though this
appears to be consistent with what one might expect, nothin
known at present concerning the effect of pressure on frac
toughness of composite materials.

The total potential energy density of the split specimen,Ps , is
the sum of the elastic energy density,Es and the surface energ
density,G,

Ps5Es1G. (2.8)

2.3 Criterion for Longitudinal Splitting. From the prin-
ciple of minimum potential energy, the criterion for axial splittin
can be expressed as

Pu2Ps,0⇒unsplit (2.9a)

Pu2Ps50⇒neutral (2.9b)

Pu2Ps.0⇒split. (2.9c)

Assuming thatG is independent of stress state, the eq
potential linePu2Es5G, i.e., Pu2Ps50 provides the stress
state for the neutral condition~2.9b!. Examining the quadratic
form Pu2Es , it can be shown thatPu2Es is a monotonically
increasing function ofs for sc5constant provided s.sc .
Therefore, the critical condition is given by the equality

Pu2Ps50. (2.10)

The criterion for longitudinal splitting~2.10! could be inter-
preted in terms of the surface energy of the newly created surf
(Gc52g) which cause the reduction in the elastic energy of
intact ~unsplit! material.

3 Results

3.1 Compressive Strength. Substituting for Pu and Ps
from ~2.4! to ~2.8!, the critical stress for longitudinal splitting ca
be obtained by solving~2.10!. Since the form of the total potentia
energy is a quadratic ofs, there are two rootss1 ands2 :

s1,25
p2sc6Ap2

2sc
22p1~p3sc

22G!

p1
(3.1)
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wherep1 , p2 , andp3 are expressed in terms of the elastic co
stants of the materials

p15
1

2 S v f

Ef
1

vm

Em
2

1

E1*
D , p25

v fn f

Ef
1

vmnm

Em
2

n21*

E1*
,

p35
v f~12n f !

Ef
1

vm~12nm!

Em
2

1

2 S 1

K23*
1

4n21*
2

E1*
D .

For a given confining pressuresc and surface energy densityg,
s1>s2 , hence,s1 is taken as the critical stresss* . Letting sc
50 in ~3.1!, the critical stress without confinement, i.e., the u
confined longitudinal compressive strength for the composite
be obtained:

s* usc5052S 2gv f

a D 1/2S v f

Ef
1

vm

Em
2

1

E1*
D 21/2

. (3.2)

Equation~3.2! shows that unconfined strength is proportional
the square root of surface energy and inversely proportional to
square root of fiber diameter. This result indicates that for a gi
volume fraction, all other things remaining unchanged, comp
ites with larger fiber diameter are more susceptible to axial sp
ting than smaller diameter fibers. SinceEf@Em in usual fiber-
reinforced composites,vm /Em@v f /Ef and E1* >v fEf hold.
Based on these evaluations,~3.2! can be simplified as follows:

s* usc5052S 2gv f

a D 1/2S 12v f

Em
2

1

v fEf
D 21/2

. (3.3)

Examining the quadratic form of the energy surface,F(s,sc)
5Pu2Ps for a constant surface energy densityg, and assuming
that the longitudinal~fiber direction! compliance is smaller than
the lateral~transverse! compliance in the composite~typical for
most fiber reinforced composites! the following inequality holds:

ds*

dsc
<1 (3.4)

subject to the constraints

s.sc (3.5a)

and

dF5
]F

]s
ds1

]F

]sc
dsc50. (3.5b)

The first constraint~3.5a! corresponds to axial compression an
the second constraint~3.5b! corresponds to the equi-potential line
From ~3.4!, one can conclude that if the splitting failure is go
erned by the principle of minimum total potential energy and
surface energy densityg is a constant, the slope of the relationsh
between compressive strength and confining pressure, i.e.,s*
versussc , cannot exceed unity. Even if the surface energy d
sity g is an increasing function of confining pressuresc , the
inequality ~3.4! holds at least for smallsc . The effect of lateral
confinement and material properties on the compressive stre
of composites can be investigated by using~3.1!.

3.2 Model Predictions. Examining the functional form
shown in ~3.1! and ~3.2!, important parameters for longitudina
splitting can be identified asg/a, v f , andsc . To investigate the
dependence of compressive strength on each of these param
and compare the effect of each parameter, parametric studies
been performed. In the present parametric study, two differ
types of commonly used fiber-reinforced composite are inve
gated to illustrate the dependence of compressive strength on
terial properties. These materials are a unidirectional E-gla
vinylester composite~indicated as ‘‘G/VE’’ in the figures! and a
unidirectional carbon/epoxy composite~indicated as ‘‘C/ER’’ in
the figures!. Experimental data and material properties for the
materials are available in the literature~@11,15#!. The relevant
SEPTEMBER 2000, Vol. 67 Õ 439
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Table 1 Material properties of fiber and matrix and geometry of fiber

Fiber Matrix Interface

Ef (GPa) n f
~d! v f a (m m) Em (GPa) nm g~d! ~J/m2!

E-Glass/Vinylester 72.4~a! 0.2 0.120.6~a! 12.1~a! 3.69~a! 0.38~d! 110,210
Carbon/Epoxy 260~b! 0.2 0.36~b! 3.4~b! 1.63~b! 0.34~b! 140
Carbon/Epoxy 234~c! 0.2 0.6~c! 3.4~d! 4.28~c! 0.34~d! 140

~a!Waas et al.@15#;
~b!Weaver and Williams@10#;
~c!Parry and Wronski@11#;
~d!assumed
d
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material properties including those of the fiber and the matrix
well as the radius of the fibers for these composites are show
Table 1. Surface energy densityg’s shown in Table 1 are obtaine
by calibration to the corresponding experimental data for unc
fined compressive strength.

Figure 2 shows the compressive strength of two types of c
posite for differentg/a andsc ~0 and 100 MPa! with fixed fiber
volume fractionv f560 percent. One can observe a strong dep
dence of compressive strength ong/a ~proportional toAg/a! and
relatively weak dependence onsc . Also, the compressive
strength seems to be almost insensitive to the choice of the m
rial for a given value ofg/a. Small values ofg/a correspond to
low interfacial energy~weak interface! and/or large diameter fi-
bers, whereas large values ofg/a correspond to large interfacia
energy~tough interface! and/or small diameter fibers. The unco
fined compressive strengths of E-glass/vinylester composite
carbon/epoxy composite withv f560 percent are 667 MPa@15#
and 1.5 GPa~@11#!, respectively. Based on these experimen
observations, if thev f is identical, the carbon/epoxy composi
appears to be stronger than the E-glass/vinylester compo
However, the strong dependence ong/a plays a significant role
here. Supposeg is of the same order for both composites, fib
radii a for E-glass/vinylester composite and carbon/epoxy co
posite are 12.1mm and 3.4mm, respectively~see Table 1!. This
results ing/a for the carbon/epoxy composite to be approximat
four times as that of the E-glass/vinylester composite.

Figure 3 shows unconfined compressive strength~i.e., sc50!
as a function ofg/a and v f . For a giveng/a, effect of v f on
compressive strength is much stronger than that of the mat
properties. This observation together with the insensitivity of
strength to the choice of the material observed in Fig. 2 has
following implication. The compressive strength of the unidire
tional fiber-reinforced composite is relatively insensitive to t

Fig. 2 Effect of surface energy and lateral confinement on
compressive strength „GÕVE stands for E-Glass Õvinylester and
CÕER stands for carbon Õepoxy …
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magnitude of the material properties of each constituent, i.e., fi
and matrix. Instead, the degree of anisotropy introduced by c
bining the materials with different material properties is an imp
tant factor in the determination of compressive strength. Long
dinal splitting can be considered to be the process in wh
excessive stored elastic energy due to the heterogeneity and
isotropy can be released through the formation of new surfa
The importance of anisotropy has been evidenced in this para
ric study.

Compressive strength for differentv f andsc with fixed g/a is
shown in Fig. 4. Based on experimental observations,g/a51.32
3107 J/m3 and g/a54.173107 J/m3 are used for E-glass
vinylester and carbon/epoxy, respectively, as the best fitting
ues for the model prediction of their unconfined compress
strength~@11,15#!. It is again seen that if the same values forg/a
were used, the compressive strength for both materials are clo
each other as expected from previously shown parametric stu
~Figs. 2 and 3!. In this case, the difference between the results
two different levels of confinementsc50 MPa sc5100 MPa is
small and nearly constant for all values ofv f shown here. This
shows that the effect ofsc on compressive strength is muc
weaker than that ofv f and is relatively insensitive for a givenv f .

3.3 Comparison With Experiments. To verify the validity
of the energy-based model for longitudinal splitting, the compr
sive strengths predicted by the present model are compared
the experimental results obtained for E-glass/vinylester
carbon/epoxy composites. Uniaxial compression tests on unidi
tional fiber-reinforced E-glass/vinylester composite with differe
fiber volume fraction ranging from 0 percent to 60 percent w
performed by Waas et al.@15#. For carbon/epoxy composites
compression tests on unidirectional fiber-reinforced compos
under superposed hydrostatic confinement have been perfo

Fig. 3 Effect of surface energy and fiber volume fraction on
unconfined compressive strength „scÄ0… „GÕVE stands for
E-Glass Õvinylester and C ÕER stands for carbon Õepoxy …
Transactions of the ASME
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by Weaver and Williams@10# and Parry and Wronski@11#. The
input parameters for the model prediction including material pr
erties, fiber radius, and surface energy of the material used in
experiments have been shown in Table 1.

Comparison between the model prediction and experimenta
sults by Waas et al.@15# provides the measure of the validity o
the present model with respect to changingv f . Experimental re-
sults for the unconfined compressive strength from Waas e
@15# are shown in Fig. 5. Examining the trend in compress
strength, one can observe a dip betweenv f530 percent andv f
540 percent. Based on this observation, analysis is performed
two groups of data sets. One is for lowv f , i.e., v f<30 percent,
the other is for highv f , i.e., v f>40 percent. Only the difference
in these analyses is the input parameter for the surface energg.
The values of the surface energy which enable the model pre
tions to show good agreement with experimental results arg
5210 J/m2 for the lowv f data set andg5110 J/m2 for the highv f
data set. In the present model,g has been assumed to be th
surface energy associated with delamination between the fiber
the matrix. The surface energy associated with the creation of
surfaces in the matrix has been neglected. In the case of highv f ,
surface energy associated with matrix failure is negligible si
the average distance between fibers is small and the area o
surface created by matrix failure is much smaller than the
created by interface~fiber-matrix! debonding. On the other hand

Fig. 4 Effect of fiber volume fraction and lateral confinement
on compressive strength „GÕVE stands for E-Glass Õvinylester
and C ÕER stands for carbon Õepoxy …

Fig. 5 Comparison between experimental results „†15‡… and
model predictions for E-Glass Õvinylester composite
Journal of Applied Mechanics
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as the fiber volume fraction decreases, the average distance
tween fibers increases and the surface energy associated with
trix failure becomes no longer negligible, which results in t
increase of total surface energy. Also, the nonlinearity of the m
trix for vinylester ~@15#! which is important at low volume frac-
tions of the fiber has been neglected in the present analysis.
increase in surface energy associated with matrix failure is c
sistent with the requirement for larger surface energyg for lower
v f . Further work towards quantification of fracture energies a
function of volume fraction in fiber reinforced composites
needed. The model predictions for the matrix-dominated reg
and the fiber-interface dominated region can be regarded, res
tively, as upper and lower bound for compressive strength of
composite.

The experimental result shows considerable scatter forv f
>40 percent. In general, the interfacial toughness is highly dep
dent on local conditions such as size/orientation of initial imp
fection, mode mixity, and bonding~interface strength and tough
ness!. As a result, the interface properties vary more than
material properties of each constituent of composite, i.e., fiber
matrix. The fracture energy of fiber-reinforced composites (Gc)
depends strongly on the local mode mixity~@19#!. Therefore, for
the case of lowv f , the scatter in compressive strength is re
tively small since the matrix plays a signifiant role in determini
the surface energy associated with splitting. On the other ha
since the surface energy associated with fiber/matrix debondin
dominant for highv f , the local interfacial conditions play a sig
nificant role in determining the compressive strength. This res
in a large scatter of the compressive strength for composites
high v f as seen from the experimental results in Fig. 5.

Comparison between the model prediction and experimenta
sults by Weaver and Williams@10# ~WW! and Parry and Wronsk
@11# ~PW! provides a measure of the validity of the present mo
with respect to the confining pressure,sc . To the best knowledge
of the authors, WW and PW are the most widely accepted relia
experimental data regarding compressive failure of unidirectio
fiber-reinforced composites under superposed hydrostatic con
ment including detailed discussion on failure modes. Althou
some specimen geometry dependence of failure mode is repo
in PW and short specimens used in WW show end effect, th
experiments are convincing enough to regard longitudinal sp
ting as the dominant failure mode under weak lateral confinem
The critical stresss* is plotted against the confining pressuresc
in Fig. 6 ~WW for 0<sc<150 MPa! and in Fig. 7~PW for 0
<sc<300 MPa!. In the experiments by PW, for higher confinin
pressure (sc.150 MPa), the slope ofsc versuss* graph is
steeper than those for lower confining pressure as seen in Fi

Fig. 6 Comparison between experimental results „†10‡… and
model prediction for carbon Õepoxy composite, v fÄ36 percent
SEPTEMBER 2000, Vol. 67 Õ 441
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This increase of the slope is also observed in the experiment
WW. Besides, both observed failure mode transition from lon
tudinal splitting to kink banding aroundsc5150 MPa. Therefore,
the comparisons are restricted to low levels of confinement,
0<sc<150 MPa. Surface energy per unit area,g, used here is
assumed to be the same for both the cases and is shown in T
1. The model predictions show significant agreement with
experimental results, especially with those obtained by PW~Fig.
7!. The theoretical predictions agree with the experimental res
given by WW ~Fig. 6! for confining pressures 0<sc<50 MPa.
However, in the range of 50<sc<150 MPa, the agreement is no
good. The experimental results show considerable scatter for
fining pressures 50<sc<150 MPa although the samples A, B
and C are made of the same material. It is believed that due to
fiber volume fraction~36 percent!, a host of failure modes migh
have occurred under the confining pressure 50<sc<150 MPa in
the experiments by WW, and this could explain the scatter
experimental results. Also,v f536 percent happens to be in th
range of transition zone from matrix-dominated region to interfa
dominated region for longitudinal~axial! splitting of E-glass/
vinylester composite discussed above. Although the materia
different, the geometrical interpretation about the increase of
area of the matrix failure still holds in this case. Therefore,
large scatter in compressive strength might be a result of the c
acteristic of the transition zone between low and high volu
fraction of fibers.

In the present model, the only adjustable parameter is sur
energy per unit area,g, which is not readily available for the
composites considered here from experimental measurem
However, the valuesg used in the model predictions appear to
consistent with data available for similar composite mater
~@21#! by assumingGc52g.

4 Conclusions and Discussion
An energy-based model has been developed for predicting

compressive strength of unidirectional fiber-reinforced compos
which fail by longitudinal~axial! splitting. The following conclu-
sions are based on the analytic results~3.1! and ~3.2!:

~i! The critical stress for longitudinal splitting is proportion
to Ag/a and this parameter is the most dominant term in
determination of the compressive strength of fiber-reinforc
composites. According to the present model, composites w
larger fracture energy and small fiber diameters would resul
higher strength.

~ii ! The degree of the anisotropy plays a significant role a
the effect of fiber volume fraction appears only in this context
influencing the compressive strength.

Fig. 7 Comparison between experimental results „†11‡… and
model predictions with the effect of increasing surface energy
for carbon Õepoxy composite, vfÄ60 percent
442 Õ Vol. 67, SEPTEMBER 2000
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~iii ! The effect of confining pressure on compressive stren
is relatively weak.

The model prediction has been compared with the experime
results and showed good agreement. This agreement suppor
validity of the present method for the analysis of longitudin
splitting ~delamination failure! in unidirectional fiber-reinforced
composites.

The assumption of a constantg would predict longitudinal
splitting at all levels of confinement and with markedly low
strength than experimentally observed ones at high confining p
sures. Beyond certain confining pressure, longitudinal splitting
completely suppressed and the failure mode translates to
banding~@10–12#!. In order to illustrate the effect of increasin
fracture surface energyg with increasing pressure,g is assumed
to depend onsc as follows:

g5g0H 11anS sc

s0*
D nJ (4.1)

whereg0 is surface energy forsc50, s0* is the unconfined com-
pressive strength,n is the confining pressure hardening expone
andan is a positive dimensionless parameter corresponding to
exponentn. FornÞ0 in ~4.1!, g increases assc increases and this
results in nonlinear dependence of model prediction of comp
sive strength onsc . In this case, the inequality~3.4! for the slope
of s* versussc being less than unity holds at least for smallsc .
The dependence ofg on sc ~4.1! can be viewed to reflect the
increase in the energy release rateGc as the local mode-mixity for
interface cracking changes from mostly mode I to mode II~@19#!
with increasing confinement.

The model predictions of compressive strength for the carb
epoxy composite used by Parry and Wronski@11# for the cases
n52 andn54 in ~4.1! are shown in Fig. 7. Input parameters fo
the model predictions areg05140 J/m2, s0* 51.5 GPa, a2
515.58, anda45823.6. Comparison between the cases ofn52
andn54 shows that as the exponentn increases, the curvature o
the failure envelope can be increased and as a result, the m
prediction for longitudinal splitting stays close to experimen
result in wider range of confinement than the prediction based
smallern and exceeds the experimental value at high confin
pressures where formation of kink bands, instead of longitud
splitting, is observed in experiments. This observation implies t
if g increases as a function ofsc and its dependence onsc is
strong, i.e., exponentn is large, longitudinal or axial splitting can
be observed up to certain levels of confinement and is suppre
at high levels of confinement where other failure modes such
kink band formation should be considered.

Acknowledgment
This work was supported by the Office of Naval Research~Dr.

Y. D. S. Rajapakse, Scientific Officer! through a grant to the Cali-
fornia Institute of Technology.

Appendix
Following Hashin and Rosen@16#, the expression for the effec

tive moduli of the unidirectional fiber composite~x1-fiber direc-
tion! E1* , n21* , K23* , andG23* are given below:

E1* 5~v fEf1vmEm!
Em~D12D3F1!1Ef~D22D4F2!

Em~D12D3!1Ef~D22D4!
,

n21* 5
v fEfL11vmEmL2nm

v fEfL31vmEmL2

K23* 5Km

K f~112nmv f !12Kmnmvm

K fvm1Km~v f12nm!
;
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G23* 5GmY F11
2~12nm!

122nm
v fA4G ~ lower bound!

where D1512n f , D25(11v f)/vm1nm , D352n f
2, D4

52nm
2 v f /vm ,

F15
nmv fEf1n fvmEm

n fv fEf1nmvmEm
, F25

n f

nm
F1 ,

L152n f~12nm
2 !v f1nm~11nm!vm , L25v f~12n f22n f

2!,

L352~12nm
2 !v f1~11nm!vm ,

A452~Gf2Gm!~2nm21!@Gm~4n f23!~v f
321!

2Gf$~4nm23!n f
321%#/@Gm

2 ~4n f23!~v f21!4

22GfGm$2516nm24n f16v f
224nmv f

31~322nm!n f
4

12n f~324nm14vm26v f
214nmv f

32v f
4!%

1Gf
2$314v f26v f

214v f
3~326nm14nm

2 !

1~324nm!v f
42nm%#

Ef , n f , v f and Em , nm , vm are the Young’s moduli, Poisson’
ratios, and the volume fractions of the fiber and the matrix,
spectively.

The elastic moduliC11* ,C12* ,C22* ,C23* are expressed usingE1* ,
n21* , K23* , andG23* given above;

C11* 5E1* 14n21*
2K23*

C12* 52n21* K23*

C22* 5K23* 1G23*

C23* 5K23* 2G23* .
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Quasi-Static Propagation of
Subinterfacial Cracks
The problem of quasi-static crack propagation in a three-point bend specimen conta
an initial crack that is parallel to and offset from a bimaterial interface is considered.
approximate dislocation-based fracture model is used to identify conditions under w
such cracks are attracted to or repelled by the interface. Possible configurat
(material/geometry) where such subinterfacial cracks experience pure mode I cond
are determined. Experimental results are presented showing quasi-static crack pro
tion of subinterfacial cracks for three regimes: (attractive) into the interface; (repuls
away from the interface; as well as (equilibrium) parallel to the interface.
@S0021-8936~00!01903-6#
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1 Introduction

Interfacial and subinterfacial cracks in bimaterial systems ar
interest due to their relevance to fracture and failure of compo
structures and microelectronic devices. There are several the
ical studies on interfacial cracks~@1–11#! and subinterfacial
cracks~@12–15#!, which have dealt with such issues as the nat
of the crack-tip singularity and possible crack-face contact. Cr
propagation in bimaterial systems occurs always~for interfacial
cracks! or mostly always~for subinterfacial cracks! under mixed-
mode conditions. Mixed-mode crack propagation even in hom
geneous linear elastic media is still not completely underst
~@16#!, even though the theoretical basis for mixed-mode crack
stress states is well laid out in terms of classical linear ela
fracture mechanics. It appears that at large mode-mixities the s
dard fracture propagation criteria based on maximum energy
lease rate, maximum tangential stress, or the minimum strain
ergy density all deviate from each other and also fro
experimental data~see, for example,@17–19,16,20#. Post-mortem
examination of the surfaces of mixed-mode fracture in essent
brittle materials has indicated that at large mode-mixity, the cr
surface is rougher than at small mode-mixity, suggesting a cha
in crack propagation mechanisms and in the fracture process
~@16,21#!.

The situation is much more complex for interface and subin
face cracks because the mode-mixity here arises not only f
geometric conditions but also from material mismatch. Extens
studies on interfacial crack propagation dealing with fract
toughness issues, dynamics, and material nonlinearity have
undertaken over the past decade~@22–33#!.

The focus of this paper is much narrower than the issues s
ied by the researchers cited above, and it concerns the propag
of subinterfacialcracks that are off but close to an interface b
tween two dissimilar linear elastic materials. The theoretical ba
for this is rather straightforward as these subinterfacial cracks
entirely in one material, and therefore their propagation should
governed by the concepts of classical linear elastic fracture
chanics forhomogeneousbodies, at least as long as the crack do
not run into the interface. The effect of the second material
only be to alter the stress state, and hence the mode-mixity, a

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
18, 1999; final revision, Jan. 11, 2000. Associate Technical Editor: K. T. Ram
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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vicinity of the subinterfacial crack. Early studies by Erdogan@15#
have outlined the analysis methodology that we shall adopt h

The basic question that we shall attempt to answer in this w
is this: For a three-point bend bimaterial PMMA/Al6061 spe
men containing a subinterfacial crack of initial length ‘‘a’’ that is
parallel to the interface but offset by a distance ‘‘d’’ are there
specific locations ‘‘d/a’’ at which the subinterface crack will ex-
perience pure mode I conditions? If so, such a crack can be
pected to grow parallel to the interface at least incrementally.
shall call such positions ‘‘equilibrium positions’’ for the subinte
facial crack. This is essentially the same question as the one ra
by Hutchinson, Mear and Rice@34# with later extensions by Yang
and Kim@35#. The answers that were provided by the Hutchins
Mear, and Rice@34# analysis are applicable to the center cra
geometry, and by an argument of far-field dominance of aninter-
facial crack-tip field, to other situations where such dominance
obtained. This latter condition implies that the ratio ‘‘d/a’’ should
be sufficiently small and the planar extent of the specimen sho
be sufficiently large so that one can assume that there are
tances at which the subinterfacial crack can be thought of as b
essentially on the interface.

Unfortunately, for the configurations pertinent to this study t
prevalence of a far-field interfacial crack-tip field cannot be
sumed. In this work, we therefore attempt to answer the ab
question both theoretically using dislocation-based fracture m
els and finite element numerical simulations, as well as exp
mentally using optical interferometry.

In Section 2, details of a simple analytical model are discus
for the three-point bend subinterfacial crack geometry followi
the lines of Erdogan@15#. Relevant details of a full-field optica
measurement technique~Polariscope/Shearing Interferomete
PSI! that is used in this study are described in Section 3. Qu
static subinterfacial crack propagation experiments are descr
in Section 4. Three-point bend specimens made of PMM
A16061 bimaterial systems were loaded to initiate and propag
subinterfacial cracks. The experiments indicate the conditions
der which a subinterfacial crack is attracted to or repelled by
interface, and also demonstrate that, under certain circumstan
if the crack happened to be initially located at the right position
may even grow in its own plane parallel to the interface. T
experimental results are compared with crack trajectories
dicted by finite element simulations, and with the results of
dislocation-based fracture analysis.

2 Analysis of Subinterfacial Cracks in a Three-Point
Bend Bimaterial Specimen

Consider the three-point bend PMMA/A16061 bimaterial spe
men shown in Fig. 1~a!. The subinterfacial crack is in materia
‘‘1’’ ~PMMA!. A state of plane stress is assumed to prevail. O
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© 2000 by ASME Transactions of the ASME



s
t

nd
ere-
the

e
e
t

goal is this: determine any possible ‘‘equilibrium’’ position ‘‘d’’
~distance between interface and crack! of the subinterfacial crack
of length ‘‘a’’ in a given three-point bimaterial specimen~of rel-
evant in-plane dimension ‘‘w’’ assuming that all other dimension
are much greater thanw! which leads to a pure mode I stress sta
The ‘‘characteristic distances’’ at which any such equilibrium p
sition is obtained will be denoted nondimensionally byd* /a.

Unlike the center crack specimen which is readily analyzed
Journal of Applied Mechanics
e.
o-

but

is virtually impossible to experimentally test, the three-point be
specimen is very easy to test but much harder to analyze. Th
fore an approximate method of analysis is described here,
validity of which is verified experimentally. The solution to th
actual problem~Fig. 1~a!! can be obtained by superposition of th
following two subproblems:~a! a beam in three-point bending bu
containing no crack~Fig. 1~b!; and ~b! a plate with no far-field
Fig. 1 Three-point bend PMMA ÕAI 6061 specimen: „a… actual specimen Ä„b …
beam without crack and only applied load ¿„c … plate without applied load and
only dislocations to cause crack

Fig. 2 Modification of edge crack problem to center crack problem: „a… edge
crack model, „b… center crack model, „c… traction stresses of edge crack, „d…
traction stresses of center crack
SEPTEMBER 2000, Vol. 67 Õ 445
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Fig. 3 The traction stresses at imaginary crack line locations from Bernoulli-
Euler beam bending analysis
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loading and containing dislocation distributions to create the cr
by nulling out the appropriate crack-line traction stresses~Fig.
1~c!!. The first subproblem is easily analyzed using Bernou
Euler beam theory. The second subproblem, however, is a
more complicated because it needs to be built up from the solu
for a single edge dislocation off the interface between two bim
terial quarter-spaces~@36#!. Such a solution is very hard to obtai
primarily because of the difficulty associated with obtaining
traction-free edge plane. In any event, the traction-free condit
on the other free boundaries will never be exactly met in a fin
geometry. Because of these limitations, the approach that wil
taken here is to obtain the dislocation distributions necessar
create acentercrack in an infinite geometry, but using the cra
line traction stresses obtained from subproblem~a! appropriately
extended~‘‘mirrored’’ ! for a center crack as shown in Fig. 2. Th
rationale for this is that the stress field for an edge dislocation f
as 1/r with distancer, and therefore the crack-tip behavior
therefore primarily going to be dictated by the dislocation dis
butions near the vicinity of the tip. That the ‘‘mirrored’’ cente
crack specimen will always have traction stresses along the m
line x50 ~which is the edge of the real specimen! due to the
dislocations that straddle the midline means that our approxim
analysis will be in error in some significant ways. Whether o
approximate solution is acceptable or not will be determined
perimentally~Section 4!.

2.1 Subproblem „a…: Beam Analysis. From a Bernoulli-
Euler analysis of beam bending~Fig. 1~b!!, the traction stresses o
the expected crack-line are given by

syy~x,d!5
PL1

L11L2
H 12

hw3J @L22s1d#Fw

2
2xG ; for s.d

(1)

5
PL2

L11L2
H 12

hw3J @L11s2d#Fw

2
2xG ; for s,d;

sxy~x,d!52
PL2

L11L2

1

hw
; for s.d

(2)

51
PL1

L11L2

1

hw
; for s,d;

where the plate thickness ish. Figure 3 shows the traction stress
MBER 2000
ck

lli-
bit

tion
a-

a
ons
ite
be
to

k

e
lls

s
ri-
r
id-

ate
ur
ex-

s

on the expected crack-line for the case whenL150.15 m, L2
50.1 m, w50.15 m, s50.01 m and crack lengtha50.07 m.
These parameters correspond to specimen III discussed in Se
4. Note that the Bernoulli-Euler beam theory is expected to p
dict the normal stress distribution very well, but is not expected
produce an accurate measure of the shear stress distribu
While, second-order corrections~such as the Timoshenko theory!
may be used to get a better estimate of the shear stress dis
tion, this is not essential for our purposes as the results of
analysis will prove to be adequate.

2.2 Subproblem „b…: Dislocation Distribution. We can
now use the traction stresses obtained from subproblem~a! in
subproblem~b! to null out the tractions along the subinterfaci
crack line. Using this approach, the problem of the subinterf
crack results in a system of Cauchy-type singular integral eq
tions for the dislocation distribution densities~@15#!

E
2a

a 2By~x8!

x2x8
dx81E

2a

a

By~x8!K11~x,x8;d!dx8

1E
2a

a

Bx~x8!K12~x,x8;d!dx852
syy~x8,d!

D
(3)

E
2a

a 2Bx~x8!

x-x8
dx81E

2a

a

By~x8!K21~x,x8;d!dx8

1E
2a

a

Bx~x8!K22~x,x8;d!dx852
sxy~x8,d!

D
(4)

where Bx(x8) and By(x8) are glide and climb edge dislocatio
density functions along the crack linex852a to a;syy(x8,d) and
sxy(x8,d) are the traction stresses from subproblem~a! along the
crack line; andD and the kernel functionsKi j (x,x8;d) are given
in the Appendix. In order to have uniqueness of solution,
dislocation density functionsBx(x8) andBy(x8) must satisfy

E
2a

a

By~x8!dx850 (5)

E
2a

a

Bx~x8!dx850 (6)
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which assure crack closure at the tip~@37#!. The above set of
Cauchy-type singular Eqs.~3!–~6! is solved using the numerica
method developed by Erdogan and Gupta@37# and the details of
this are spelt out in Lee@38#.

Once the dislocation distributions are obtained, the stress in
sity factors can be calculated directly from~@39#!

KI52
2m1

A11k1

Apa@Aa22x2.By~x!#x→a (7)

KII 5
2m1

A11k1

Apa@Aa22x2.Bx~x!#x→a (8)

wherem1 is the shear modulus of material ‘‘1’’ and the materi
parameterk1 involves Poisson’s ratio and is defined in the A
pendix.

A dislocation in the presence of a stress-field experience
force on it and it can be shown~@39#! that the forces on the
dislocations~that form the crack! due to the applied far-field load
are directly related to theJ-integral, which can in turn be relate
to the stress intensity factor through

FE5Jx5 R
G
S Wdy2Ti

]ui

]x
dsD5

11k1

8m1
~KI

21KII
2 ! (9)

FD5Jy52 R
G
S Wdx1Ti

]ui

]y
dsD52

11k1

4m1
KIKII . (10)

HereFE is called the crack extension force andFD is called the
crack deflection force and the positive signs ofFE and FD are
taken such that the forces on the right crack are along the pos
x andy-directions respectively. Also in the above:W is the strain
energy density,Ti are the tractions, andui are the displacement

Fig. 4 Stress intensity factor and crack extension and deflec-
tion forces for the PMMA ÕAI 6061 bimaterial specimen III as pre-
dicted by the model
Journal of Applied Mechanics
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and the integral is over any loopG enclosing the right crack-tip. It
is seen from the above that whenK II50, the crack deflection force
FD is zero, and the crack can be expected to grow in its own pl
in pure mode I. However, whenK II.0, the deflection forceFD is
negative~i.e., directed along the negativey-direction in Fig. 2!,
and the crack can be said to beattractedto the interface. Contrar-
ily, when K II,0, the deflection forceFD is positive~ie directed
along the positivey-direction!, and the crack isrepelledby the
interface. Note thatK I is always assumed to be positive in ord
for the crack to grow.

The results of the above analysis are given below for one p
ticular case when: L150.15 m, L250.1 m, w50.15 m, s
50.01 m and crack lengtha50.07 m for PMMA/A16061 speci-
men III ~discussed in Section 4!. The stress intensity factors an
the corresponding crack deflection forces are shown in Fig. 4~a,b!,
respectively, for various crack positions ‘‘d/a. ’ ’ It appears that
the characteristic distanced* /a is around 0.25 whereK II and
hence the deflection forceFD vanish for this configuration. In this
case, if the subinterfacial crack happens to be farther away
the equilibrium position, i.e., (d/a).(d* /a), we see that the
crack deflection forceFD,0, and so such a crack-tip will be
attracted to the interface. Conversely, if (d/a),(d* /a), the crack
deflection forceFD.0, and so the crack-tip will be repelled b
the interface.

3 Shearing Interferometery
Shearing interferometric techniques are useful in mapp

stress-field distributions in optically isotropic materials~such as
polymethylmethacrylate—PMMA! or opaque materials~such as
aluminum! where photoelasticity is inapplicable. See Tippu
Krishnaswamy, and Rosakis@40# for details of a shearing tech
nique called Coherent Gradient Sensor~CGS!; and Lee and Krish-
naswamy@41# for a combined Polariscope-Shearing Interfero
eter ~PSI!. The optical layout and the schematic of the shear
interferometric mode of the latter PSI device are shown in Fi
5~a,b!. A 5 mW HeNe laser is used as the coherent light source
quarter waveplate is used to circularly polarize the beam. A se
micro-objective lenses, spatial filter, and beam collimator,
used to obtain a clean and collimated plane wave. The beam
passes through the transparent PMMA specimen under test.
transmitted beam is then sheared by a specially designed pris
shown in Fig. 5~b!. The specially cut prism is made of birefringen
calcite and generates two orthogonally polarized parallel and
erally shifted copies of the input beam. These two beams are m
to interfere by use of an analyzer. The resulting interference
tern produces fringes related to the gradients of the stress-ind
phase shift in the transmitted beam. For optically isotropic ma
rials such as PMMA, the stress-induced phase retardation is i
pendent of polarization, and the total phase retardationFsp at any
point due to transmission through the specimen is related to
stresses at that point through~@40#!

Fsp~x,y!5
2phc

l
$s11s2% (11)

whereh is specimen thickness,l is wavelength of the laser beam
c is a stress optic constant of the optically isotropic PMMA m
terial, ands1 ands2 are in-plane principal stresses.

As discussed in Lee and Krishnaswamy@41#, the interference
pattern produces bright fringes in regions where

ch

l
•DX•

]~s11s2!

]X
5m. (12)

Herem is an integer representing the fringe order, and the spa
shearing amountDX ~induced by the prism! is along the global
X-direction as shown in Fig. 6.~Note that for convenience the
origins of the coordinate system are shifted in relation to the
used in the analysis Section 2!.
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Subinterfacial crack-tip stress states can be expected to b
ymptotically the same as that for a crack which is entirely in
isotropic homogeneous medium, at least as long as the crack
not run into the interface. Since in general the propagating cr
path can be along an arbitrary direction, it is convenient to de
a local~variable! coordinate system~x,y! which is instantaneously
aligned with the curved crack path~Fig. 6!. The local coordinate
system is rotated with respect to the global system by the c
kink anglew. The in-plane stresses near the subinterfacial cra
tip are then asymptotically given by

s i j ~r ,u* !5(
n50

`
r ~n21!/2

A2p
$Re~kn!s̃ i jn

I ~u* !1Im~kn!s̃ i jn
II ~u* !%

(13)

where u* is the polar angle measured with respect to the lo
x-axis; r is the radial coordinate with respect to the instantane
crack tip;kn are complex amplitudes of whichk05K5K I1 iK II is
the complex stress intensity factor whereK I and K II represent
mode I and mode II components, respectively; andŝ i jn

I (u) and
ŝ i jn

II (u) are dimensionless functions that are completely kno
~listed in full in Lee @38#!. Experimentally, however, the fringe
are related to the globalX-gradients of the sum of these stress
since the shearing prism is fixed so as to provide shearing a

Fig. 5 „a… Optical layout of the shearing interferometric sys-
tem, „b… schematic of the shearing interferometer

Fig. 6 Global and local coordinate systems for a propagating
crack
448 Õ Vol. 67, SEPTEMBER 2000
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the initial crack line parallel to the interface. It is therefore co
venient to cast Eq.~13! in terms of the global coordinates; that i
as functions of (r ,u) where u5u* 1w. One then obtains the
fringe relations by a direct use of chain differentiation:

ch(
n50

`

~n21!
r ~n23!/2

A2p H Re~kn!cosS n23

2
u2

n21

2
w D

1Im~kn!sinS n23

2
u2

n21

2
w D J

5
ml

DX
. (14)

Extraction of the stress intensity factor~and the other higher orde
termskn! from an experimental fringe pattern proceeds as follow
The crack origin, and the kink anglew are identified, and the
fringe locations (r ,u) of various fringe ordersm are digitized. The
experimental data are then used in an over-deterministic le
squares scheme~@42#! using Eq.~14! to obtain thekn’s. Details of
the data analysis procedure including examples illustrating
accuracy of the experimental procedure are given in Lee
Krishnaswamy@41#.

4 Experimental Results of Quasi-Static Propagation
We shall now present selected results of subinterfacial cr

propagation in several PMMA/A16061 bimaterial three-po
bending specimens. The relevant material properties of PM
and A16061 are given in Table 1. To avoid the use of a th
adhesive material to bond the two halves together and to ma
strong interface, methylmethacrylate monomer was used. A s
crack parallel to and offset from the bimaterial interface was i
tiated by gently driving a razor blade inserted at the end of
edge notch. The residual stresses along the bimaterial inter
due to heat generated in the curing process were optically
served to be negligible. Qualitatively, we do not expect resid
stresses to play a significant role in these experiments. Three
ferent loading conditions were used to generate different ini
mode-mixities for the subinterfacial cracks. A pneumatica
driven loading machine was used to increase the applied loadP in
order to initiate and cause to propagate the initial subinterfa
crack. The loading rate was about 1 N/sec. A video recorder
erated at 1000 frame/sec was used to image the crack propag
and to obtain shearing interferometric data as described in Sec
3. In all the experiments reported here, the crack propaga
speed was less than 1 mm/sec in the region of interest. There
inertial effects were deemed negligible.

The analysis for extracting the stress intensity factorK from the
experimental results is based on a linear elastic assumption o
underlying stress fields. The size of the plastic zone as the c
initiated and propagated was estimated to be much smaller
the other relevant geometric scalesa, d. Numerical simulations of
the experiments were therefore done assuming quasi-static, li
elastic conditions. The finite element crack propagation progr
FRANC2D ~@43#! was used because it has built-in fracture crite
and automatic remeshing as the crack propagates.

4.1 PMMAÕA16061 Bimaterial Specimen I. Specimen I
had the following geometric parameters:L15150 mm, L2
5150 mm, w5150 mm, s510 mm, d510 mm, plate thickness
h59 mm, and initial crack lengtha530 mm. This configuration

Table 1 Material properties

Material Properties

Young’s
Modulus
E ~GPa!

Poisson’s
Ratio

n
Stress-Optic Constan

c

PMMA 3.24 0.35 0.923*10210 m2/N
Al6061 69 0.3 -
Transactions of the ASME
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is symmetric with respect to the specimen but not material ge
etry. As the applied loadP was increased, the subinterfacial cra
initiated and began to propagate initially outward from the bim
terial interface, subsequently finding a path that is almost para
to the interface. Figure 7~a! shows a photograph of the fracture
specimen indicating the crack trajectory. Superposed on this is
numerically simulated crack path obtained using the maxim
tangential stress criterion for crack growth in a finite elem
simulation of this specimen. We note two things:~i! even though
the load configuration for bimaterial specimen I is symmetric w
respect to the specimen geometry, the crack propagates alo
curved path due to mode-mixity arising from the material m
match and~ii ! the maximum tangential stress criterion used in
numerical simulation captures the crack propagation path for
case extremely well.

Figure 7~b! shows a sequence of shearing interferometric
ages as the crack initiates and then propagates. Analyzing t
fringe patterns as set out in Section 3, the magnitude of the s
intensity factoruK u5AK I

21K II
2 is observed to increase during th

initial crack propagation phase for up to about 4 mm of grow
~Fig. 7~c!!. The fracture toughness value for this subinterfac
crack propagation case appears to be around 1.1;1.2 M•PaAm
which is close to the measured value for the fracture toughnes
homogeneousPMMA as one would expect. The phase angle ofK
defined asf5tan21(KII /K I) starts around215 deg due to the
large mode-mixity arising from the material mismatch. This lar
negative phase angle~negativeK II! leads to a positive~‘‘repul-
sive’’! crack deflection forceFD , resulting in the crack initially
propagating outward from the interface. The fact thatK II ~or
equivalently the phase angle of the stress intensity factorK ! rap-
idly decreases and is minimal after about 5 mm of propaga
demonstrates that the subinterfacial crack seeks to propa
along a path that leads to zero mode II, at least for trajectories
are sufficiently far from the bimaterial interface. This is consist
with behavior expected of cracks in homogeneous ela
materials.

4.2 PMMAÕAl6061 Bimaterial Specimen II. Specimen II
had the following geometric parameters:L1550 mm, L2
5150 mm, w5150 mm, s510 mm, d510 mm, plate thickness
h59.5 mm, and initial crack lengtha530 mm. In this case, the
crack first propagates inward, contacts the interface, and su
quently grows along the interface~Fig. 8~a!!. Superposed on the
experimental data is the path predicted by a finite element si
lation using the maximum tangential stress criterion as bef
The numerical path is also observed to initially turn towards
interface, but the actual crack trajectory itself does not match v
well with that observed in the experiment. Further mesh refi
ment does not improve the simulation, and the reason for
discrepancy therefore lies elsewhere.

The shearing interferometric fringes for this case are show
Fig. 8~b!. Analyzing these to extract the stress intensity factors
before, we find that the mode II component ofK starts out very
large ~Fig. 8~c!!~the initial phase angle is around130 deg at ini-
tial propagation! and does not disappear as the crack runs into
interface. The effect of this positiveK II ~negativeFD! is to cause
the crack to be attracted in to the interface. While the ove
behavior is as expected, the actual divergence of the experim
path from that predicted numerically can be explained from so
of the interferometric fringe patterns in Fig. 8~b! that are shown
zoomed in Fig. 8~d!. These fringe patterns clearly indicate that
this case where the mode-mixityremains large during propaga-
tion, the crack surfaces contact each other over macroscopi
significant distances behind the crack front. The simulations, h
ever, do not capture crack contact. One of the major effects
crack flank contact should be an apparent increase in the frac
toughness attributable to an increase in energy dissipation du
friction between the crack flank surfaces. This is reflected in F
8~c!, where the magnitude of the stress intensity factorK is much
higher than that required for propagation in homogeneous PM
Journal of Applied Mechanics
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under predominantly mode I conditions. A post-mortem examin
tion of the crack surfaces showed that these were much rough
this case~specimen II! than when the mode-mixity was smalle
~specimen I!. It is also interesting to note that the crack surfa
contact is dramatically changed when the crack hits the interf

Fig. 7 „a… Comparison of crack propagation trajectories in
PMMAÕAI 6061 bimaterial specimen I, numerical simulation su-
perposed on the experimental results; „b… shearing interfero-
metric fringes for PMMA ÕAI 6061 bimaterial specimen I; „c…
measured stress intensity factor and phase angle versus crack
propagation distance of PMMA ÕAI 6061 bimaterial specimen I
SEPTEMBER 2000, Vol. 67 Õ 449
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Fig. 8 „a… Comparison of crack propagation trajectories in PMMA ÕAI 6061 bimaterial specimen II; numerical simulation
superposed on the experimental results. „b… Shearing interferometric fringes for PMMA ÕAI s6061 bimaterial specimen II. „c…
Measured stress intensity factor and phase angle versus crack propagation distance of PMMA ÕAI 6061 bimaterial specimen
II. „d… Crack surface contacts in PMMA ÕAI 6061 bimaterial specimen II. „i…, „ii …, „iii …, and „iv … are zoomed images of Figs. 8 „b…,
„d…, „g…, and „i…, respectively.
k

h the
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~see Fig. 8~d! ~iii ! and~iv!!. At this point, the subinterfacial crac
surfaces actually open out and appear to be no longer in con
However, the near-tipinterfacial crack is still expected to have
some contact region, but this is beyond the field of view of t
experimental setup.

It must be confessed that the interpretation of the experime
data in terms of the asymptotic crack-tip field for ahomogeneous
material becomes increasingly untenable as the crack approa
and eventually hits the interface. The results of this particu
experiment and their interpretation as set out above should th
fore be viewed at best qualitatively.
50 Õ Vol. 67, SEPTEMBER 2000
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4.3 PMMAÕAl6061 Bimaterial Specimen III. Bimaterial
specimen III had the following geometric parameters:a
570 mm, d516 mm, s510 mm, L15100 mm, L25150 mm, h
59 mm. The numerically predicted crack growth path using
maximum tangential stress criterion is straight for this case,
this compares well with what was observed experimentally
shown in Fig. 9~a!. Figure 9~b! shows a sequence of the interfer
metric fringe patterns as the crack propagating parallel to the
material interface. The mode-mixity is observed to be minim
right from the crack initiation point~Fig. 9~c!. The fracture tough-
nessuK u converges to the value for homogeneous PMMA~about
Transactions of the ASME
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Fig. 9 „a… Comparison of crack propagation trajectories in
PMMAÕAI 6061 bimaterial specimen III; numerical simulation
superposed on the experimental results. „b… shearing interfero-
metric fringes for PMMA ÕAI 6061 bimaterial specimen III. „c…
Measured stress intensity factor and phase angle versus crack
propagation distance for bimaterial PMMA ÕAI 6061 specimen III.
el-

Journal of Applied Mechanics
1.1 M•PaAm!. Despite the fact that this is a bimaterial specim
with the crack in close proximity to the interface, the phase an
of K for the whole propagation regime shown remains essenti
around 0 deg. Due to this essentially zero mode-mixity from
initial state, the crack propagates almost in a straight line para
to the interface. The characteristic ‘‘equilibrium’’ distance for th
specific PMMA/A16061 bimaterial combination and loading co
dition of specimen III was calculated analytically as described
Section 2 to bed* /a50.25. Note that this agrees reasonably w
with the experimentally measured value ofd* /a50.23, thereby
validating to a certain extent the analytical model.

5 Discussions and Conclusion
Based on the experimental data and the analyses present

the previous sections, we can draw the following conclusions
1 When the initial mode-mixity leads to a negativeK II ~a

positive crack deflection forceFD!, as in specimen 1, then th
interface repels the crack-tip. Crack propagation therefore oc
in such a manner that the crack moves further away from
interface. In the process, the mode-mixity diminishes further, a
the crack eventually finds a path ofK II50. In this case, conven
tional fracture criteria~for cracks in a homogeneous material! pre-
dict the subinterfacial crack path quite well.

2 When the initial mode-mixity leads to a positiveK II ~lead-
ing to a negativeFD!, as in specimen 2, the interface attracts t
crack-tip causing it to grow closer to the crack. While this pred
tion from the analysis is seen to hold, the numerical simulatio
for crack trajectories using the maximum tangential stress cr
rion appear to predict the actual crack path poorly. Indeed, pa
this is due to the fact that the crack flanks contact at these la
mode-mixities, a factor not taken into account in the conventio
criterion. Analyses that allow for contact and include energy d
sipation mechanisms involving frictional contact may be nec
sary to get a better handle on the crack behavior in this case

3 It is possible to findmacroscopically significantequilibrium
positions for certain material/loading combinations for which
subinterfacial crack experiences zero mode-mixity. Note that
macroscopically significant, we mean thatd* /a is neither too
small that a far-field interfacial crack-tip field can be expected
prevail ~interfacial limit!, nor too large that the bimaterial inter
face is too remote to be ‘‘seen’’ by the crack~homogeneous
limit !. It was shown that a subinterfacial crack could actua
grow parallel to the interface~and in reasonable proximity to it!
for some significant distance of propagation. An approximate
simple dislocation/beam theory fracture model was shown to p
vide a reasonably good estimate of the equilibrium position.

The results of this work are of course specific to the situatio
studied. The larger utility of this work is in terms of what th
results suggest:

~a! It is possible to obtain reasonable estimates of equilibri
positions, and crack attractive and crack repulsive zones fo
subinterfacial crack using simple beam models in a dislocati
based fracture analysis.

~b! Propagation of cracks initially located in crack repulsi
zones can be quite well described by conventional criteria suc
the maximum tangential stress criterion that are used in avail
fracture codes such as FRANC2D.

~c! Propagation of subinterfacial cracks initially located
crack attractive zones, are likely to be less successfully mod
by conventional criteria as the crack-tip gets pulled closer to
interface.
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The various terms that appear in Eqs.~3!, ~4! can be shown to

be ~@15,38#!

K11~x,x8;d!5
~l1d!~x2x8!

~x2x8!214d22
8dd2~~x2x8!3212~x2x8!d2!

~~x2x8!214d2!3

1
16d2d~x2x8!

~~x2x8!214d2!2

K12~x,x8;d!52
2~l2d!d

~x2x8!214d2 1
8dd2~6~x2x8!2d28d3!

~~x2x8!214d2!3

K21~x,x8;d!5
2~l2d!d

~x2x8!214d22
8dd2~6~x2x8!2d28d3!

~~x2x8!214d2!3

K22~x,x8;d!5
~l1d!~x2x8!

~x2x8!214d22
8dd2~~x2x8!3212~x2x8!d2!

~~x2x8!214d2!3

3
16d2d~x2x8!

~~x2x8!214d2!2 .

The material combination parameters are

D5
m1

p~k111!
; l5

a1b

b21
, and d5

b2a

b11
,

wherea andb are Dundurs parameters defined by

a5
m1~k211!2m2~k111!

m2~k111!1m1~k211!
,

and

b5
m1~k221!2m2~k121!

m2~k111!1m1~k211!

andk i5324n i for plane strain,k i532n i /11n i for plane stress:
and m i ,n i are the shear modulus and Poisson’s ratio of mate
i 5(1,2), respectively.
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Theory of Anisotropic Thin-Walled
Beams
Asymptotically correct, linear theory is presented for thin-walled prismatic beams m
of generally anisotropic materials. Consistent use of small parameters that are intrins
the problem permits a natural description of all thin-walled beams within a comm
framework, regardless of whether cross-sectional geometry is open, closed, or strip
Four ‘‘classical’’ one-dimensional variables associated with extension, twist, and be
ing in two orthogonal directions are employed. Analytical formulas are obtained for
resulting 434 cross-sectional stiffness matrix (which, in general, is fully populated
includes all elastic couplings) as well as for the strain field. Prior to this work
analytical theories for beams with closed cross sections were able to consistently in
shell bending strain measures. Corrections stemming from those measures are sh
be important for certain cases. Contrary to widespread belief, it is demonstrated tha
such ‘‘classical’’ theories, a cross section is not rigid in its own plane. Vlasov’s corr
tion is shown to be unimportant for closed sections, while for open cross sections as
totically correct formulas for this effect are provided. The latter result is an extensio
a general contour of a result for I-beams previously published by the authors.
@S0021-8936~00!03003-8#
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1 Introduction
The following discussion is restricted to the theory of prisma

beams where the three-dimensional constitutive law and str
displacement relationships can be considered linear. Any b
theory is associated with introduction of variables which depe
only on the coordinate along the beam axis. For a general typ
deformation at least four such one-dimensional variables hav
be introduced: extensional, torsional, and two bending varia
~corresponding to deformation along two orthogonal direction!.
The corresponding one-dimensional governing equations are
coupled for isotropic beams with doubly symmetric cross secti
and are given by Euler-Bernoulli theory for extension and bend
and St. Venant theory for torsion. If one wishes to extend t
theory to composite beams, the governing equations bec
coupled due to the appearance of off-diagonal terms in the cr
sectional stiffness matrix. This 434 stiffness matrixCab charac-
terizes elastic properties of the beam. Then, the strain energy
unit length is expressed in terms of the four one-dimensio
strain measures as

2Fclassical5aaCabab where aT5$U18 ,U29 ,U39 ,u8%. (1)

For thin-walled beams this problem was first posed in Reiss
and Tsai@1#. However, the approach employed therein led to
complicated set of equations, especially in the case of closed c
sections. The solution of those equations was presented only
special type of three-dimensional constitutive equations.

The introduction of the variational-asymptotic method in co
text of anisotropic beams Berdichevsky@2# allowed the treatmen
of this problem from a different perspective: beam theory c
obtain three-dimensional elasticity without making anyad hoc
assumptions using the small parametera

l !1, wherea is a char-
acteristic dimension of the cross section andl is a the wavelength
of deformation along the beam reference line. For a general~but
not thin-walled! cross section the problem is reduced to a syst
of

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
18, 1998; final revision, Mar. 7, 2000. Associate Technical Editor: W. K. Liu. D
cussion on the paper should be addressed to the Technical Editor, Professor Le
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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two-dimensional equations on a cross section. A development
numerical solution of this problem is presented in Cesnik a
Hodges@3#.

Applying the variational-asymptotic procedure to thin-walle
cross sections where another small parameter exists, na
h
a!1 ~whereh is a wall thickness!, allows one to start with shel
theory rather than three-dimensional elasticity. Rather than ha
to solve a two-dimensional problem over the cross-sectio
plane, one instead solves a one-dimensional problem over
length of the thin walls. This dimensional reduction can be a
conducted in another way: the asymptotic procedure with res
to h

a can be applied directly to the two-dimensional cross-sectio
problem that results when starting with three-dimensional elas
ity. Both approaches lead to the same final results, but the la
procedure is more computationally involved.

The former procedure was used in Berdichevsky et al.@4# to
obtain analytical solutions for closed sections. The resulting c
venient cross-sectional stiffness formulas published in that pa
are presently widely used in engineering community. Althou
shell bending strain measures were neglected in that paper, t
for most practical purposes do not affect final stiffness resu
However, as shown below, for certain material properties the
viation of their results from the asymptotically correct resu
might be significant.

Concerning the application of the variational-asympto
method to beams with open cross sections, an I-beam was vie
as an assembly of strips in Volovoi et al.@5#. Asymptotically cor-
rect formulas were obtained therein which account for Vlaso
correction. Those results are generalized here for beams with
bitrary open contours.

2 Present Approach
Beams are considered thin walled ifh!a,R whereR is a char-

acteristic radius of curvature of the midsurface. No assumpti
are made about the relative orders ofa andR, and shell theory is
employed. A curvilinear system of coordinates is introduced~see
Fig. 1!, with s andj being contour and through-the-thickness c
ordinates, respectively;r5xixi is a position vector of the shel
midsurface, vectors are denoted with bold letters. The notatio
be used is

t.
s-
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~ !8[

d~ !

dx1

t5 ṙ5 ẋ2x21 ẋ3x3

n5t3x15 ẋ3x22 ẋ2x3 (2)
r t5t•r 5 ẋ2x21x3ẋ3

r n5n•r5x2ẋ32x3ẋ2

R5 ẋ2 / ẍ352 ẋ3 / ẍ2 .

Curvilinear displacementsv i are expressed in terms of Cartesi
displacementsui as

v15u1

v25u2ẋ21u3ẋ3 (3)

v35u2ẋ32u3ẋ2

Shell strain measures are taken from the works of Koiter@6#
and Sanders@7#, which for cylindrical shells yields

g115v1,1 r115v3,11

2g125v1,21v2,1 r125v3,121
1

4R
~v1,223v2,1! (4)

g225v2,21
v3

R
r225v3,222S v2

R D
,2

.

Here gab and rab are the extensional~membrane! and bending
strain measures, respectively. Then, the strain energy densi
the shell has the form

2Eshell5hEe
abgdgabggd1h3Eb

abgdrabrgd12h2Eeb
abgdgabrgd

(5)

where Greek indices vary from 1 to 2;Ee
abgd andEb

abgd are two-
dimensional material constants corresponding to membrane
bending deformation, respectively, andEeb

abgd corresponds to cou
pling between these two types of deformation. These tw
dimensional material constants are obtained from the redu
three-dimensional material constantsDabgd by use of the relations

$Ee
abgd ,Eeb

abgd ,Eb
abgd%5

1

h E2h/2

h/2

DabgdH 1,
j

h
,S j

hD 2J dj. (6)

These constants are, in turn, obtained from the regular th
dimensional constants as

Dabgd5Eabgd2
Eab33Egd33

E3333 2HmlGabmGgdl

Fig. 1 Configuration and coordinate system
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where Hml
215Em3l32

Em333El333

E3333

Gabm5Eabm32
Eab33Em333

E3333 . (7)

For the following derivation it is convenient to rewrite Eq.~5!
as

2Eshell5c1Qi j c j12f iSi j c j1f i Pi j f j (8)

where cT[$g11,hr11,hr12%, and fT[$g12,g22,hr22%; i , j
51 . . . 3 and 333 matricesQi j , Si j , andPi j are corresponding
combinations ofEe

abgd , Eeb
abgd , andEb

abgd .
In the derivation below it is the axial coordinatex1 that is

distinct from the other two, so it is now convenient for Gre
indices to vary from 2 to 3. The variational-asymptotic meth
Berdichevsky@2,8# is used in what follows. While we avoid a
detailed discussion of this method, sufficient information is p
vided here to facilitate understanding of the derivation. We
using the term ‘‘asymptotically correct’’ concerning an approx
mate solution to denote its agreement with the expansion of
exact solution to a specified order in terms of a specific sm
parameter. It is clear that any theory which is not asymptotica
correct will certainly fail to achieve the accuracy of one which

Setting up the Problem.Since only statics is considered, on
the strain energy and work of external forces are present in
total functional. External forces are considered slowly varying
that our minimization is not affected by those forces. This lead
minimization of the strain energy density given in Eq.~5! with the
strains given by Eqs.~4!. Next, this functional is represented i
terms of a series with respect to small parameters. A recur
procedure is invoked when perturbation of the previous appro
mation is used to obtain the following approximation. From th
point of view ‘‘classical’’ approximation corresponds to the fir
~main! nonvanishing terms in that series.

In our case there are two small parameters:a
l and h

a. These
parameters are considered independent: for a given order of t
with respect toa

l we sort out the terms with respect toh
a as well.

The small parameteral enters the problem from the observatio
that X,1'

X
l andX,2'

X
a for any quantityX.

‘‘Zeroth’’ Approximation. This is a starting point of the recur
sive procedure. All terms that contain the small parametera

l in the
functional are set to zero. The resulting functional is degene
and the general solution for its kernel~null space! is found. This
defines one-dimensional variables. In our case setting all term
Eqs. ~4! containing derivatives with respect to a ‘‘slow’’ axia
variable leads to an expression for nonzero strains of ‘‘zero
functional given by

2g125v1,2 r125
1

4R
v1,2

g225v2,21
v3

R
r225v3,222S v2

R D
,2

. (9)

Since Eq.~5! is a positive-definite quadratic form of strains, for
displacement field to belong to the kernel of ‘‘zeroth’’ functiona
all strains in Eq.~9! must vanish. It can be directly checked th
the general solution of this problem has the form

v15U1 v25Uaẋa1ur n (10)
v35U2ẋ32U3ẋ22ur t

whereUi and u[v2 /R2v3,2 are arbitrary functions ofx1 . It is
easy to see~using Eqs.~3!! that these one-dimensional variable
correspond to motion of a cross section as a rigid body:Ui(x1)
translation of a cross section in thexi-direction, andu(x1) is the
rotation of a cross section aboutx1 .
Transactions of the ASME
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Asymptotic Recursion.Perturbation of the displacement fie
which was obtained at the previous step is now introduc
namely,

v15U11ŵ1

v25U2ẋ21U3ẋ31ur n1ŵ2 (11)

v35U2ẋ32U3ẋ22ur t1ŵ3 .

Substituting this displacement field, Eq.~11!, into the strains, Eqs
~4!, and, in turn, substituting the strains into Eq.~5!, one obtains
an energy functional. Only the leading terms with respect to sm
parameters are retained at this step, and a minimization with
spect tov̂ i is conducted. As a result of this procedure the pert
bations v̂ i are found as functions of one-dimensional variab
and their derivatives.

In the most general case, deformations due to all four o
dimensional strain measures are of the same order~denoted bye,
a nondimensional constant of the order of the maximum strai
the beam!. If this were not the case, any smaller deformatio
could be simply neglected in the main approximation. The o
dimensional strain measures are given in Eq.~1!. The only prob-
lem is to determine appropriate dimensional constants that nee
multiply these measures to provide a term of the ordere ~this does
not affectU18 which is already nondimensional!. As shown below,
this constant must be eithera or h, depending on the geometry o
the contour. One can calculate the appropriate order using
expression for the one-dimensional energy for the isotropic c
since all material properties are assumed to be of the same
nitude, so the order of the one-dimensional strain measures is
affected. However, these orders will naturally fall out of our de
vation. Let us emphasize that the order of perturbations is
assumed but determined during the minimization. In fact, it
easily estimated prior to the minimization by reckoning that le
ing quadratic and linear terms in the functional with respect to
unknown perturbation are of the same order.

2.1 Phantom Step. There are some terms in the strai
which are larger in magnitude than the corresponding strain c
ponent itself. Those terms are balanced by equally large term
that their combination is of a smaller order. We call such ter
‘‘phantom’’ ones. Since at each step of asymptotic procedure o
the leading terms are considered, it means that those ‘‘phanto
terms are minimized to zero. This procedure is often referred
somewhat cruelly, as ‘‘killing’’ excessively large terms in th
energy. Substituting the displacement field of Eqs.~11! into Eqs.
~4!, one obtains

g115U18
e

1ŵ1,1
e

2g125 ẋ2U28
~a/ l !21e

1 ẋ3U38
~a/ l !21e

1r nu8
e

1 ŵ1,2
~a/ l !21e

1 ŵ2,1
~a/ l !e

g225ŵ2,2
e

1
ŵ3

R
e

hr115h@ ẋ3U29
e

2 ẋ2U39
e

2u9r t
~a/ l !e

1 ŵ3,11
~a/ l !2e

#

hr125hF 1

4R
$ẋaUa81u8r n2ŵ1,2%2u81ŵ3,122

3

4R
~ŵ2,1!G

~a/ l !21e e ~a/ l !21e e ~a/ l !e ~a/ l !e

hr225hS ŵ3,22
ŵ2

R D
2

. (12)

e e

At this step, terms withrab do not enter the minimization proce
dure. The reason for this is that, for each term inrab , there is a
Journal of Applied Mechanics
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similar term ingab , but multiplied by a
h. So retaining only the

leading terms with respect toha allows us to discard terms from
rab . The most obvious ‘‘phantom’’ terms of order (a

l )
21 are

present ing12 which defines the orders for the warping, writte
underneath the individual terms in Eqs.~12!, and the solution for
v̂1,2

ŵ1,252Ua8 ẋa . (13)

There might be, however, some other ‘‘phantom’’ terms whi

are of order (al )
0, but still ‘‘too large’’ due to the presence o

another small parameterha. In other words they are of orde
e( h

a)21. The presence of one of this type of terms is related t
fundamental difference between open and closed cross sectio
constraint of single-valuedness has to be satisfied around
closed contours of closed sections for certain variables; these
straints do not apply for open cross sections. In particular,
applies to the single-valuedness ofv̂1 . For open cross section
r nu8 in g12 is a ‘‘phantom’’ since this term is killed by adding
term 2r nu8 to the right-hand side in Eq.~13!. In this case the
largest nonzero terms in the functional that are proportional tou8
will come from ther12 and u8' e

h. Integration with respect to
circumferential coordinate of Eq.~13! yields

ŵ152Ua8xa2u8E
s0

s

r nds (14)

where the coefficient foru8 is called the ‘‘sectorial coordinate’’
and is given byh(s)[*s0

s r nds. The sectorial coordinate is, in
fact, a solution of a classical St. Venant torsional problem in
shell approximation. To avoid redefiningU1 , embedded ins0
constant of integration should be chosen such that*v̂1ds50. It is
obviously convenient to choose the origin of the Cartesian co
dinates in the geometric center of the cross section, so
*x2ds5*x3ds50.

On the other hand, for a closed cross section,r nu8 in g12 is not
a ‘‘phantom’’! The requirement of single-valuedness forv̂1 pre-
vents the possibility of displacement field as in Eq.~14!; only the
last term creates a problem, sincerr nu8ds is not zero. As a result,
terms proportional tor nu8 do enter the functional, which implies

that au8'e. Then the terms withu8 in r12 will be of ordere( h
a)

and can be neglected. Therefore, for the closed sections
equivalent of the last term in Eq.~14! belongs to the next step o
approximation.

There is another ‘‘phantom’’ term that is also of the for

e( h
a)21. If a'R then

g22~ŵ2 ,ŵ3!'S h

aD 21

hr22~ŵ2 ,ŵ3!. (15)

Thus, minimization of the main terms in the functional simp
renders

g225ŵ2,21
ŵ3

R
50. (16)

However, each individual term in Eq.~16! is not zero, but rather
of order e( h

a)21 and is undetermined at this step. The seco
equation for these unknowns stems fromr22 and due to Eq.~15!
will be provided in the next approximation. Ifa andR are not of
the same order, then orders ofg22 and r22 for a given displace-
ment field are uncoupled, and no ‘‘phantom’’ terms are present
particular this is the case when no curvature is present~i.e., R
5`!. However, formulas for classical stiffnesses will have t
same form in both cases, as shown below.
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2.2 Classical Approximation. At this step terms of order
e2 in the functional are recovered. Displacement field obtaine
the previous step is perturbed again. Denoting these perturba
aswi , one can write

v15U12xaUa82u8h1w1

v25Uaẋa1ur n1ŵ21w2 (17)

v35U2ẋ32U3ẋ22ur t1ŵ31w3 .

This is the most general form of the perturbed displacement fi
As described above, the underlined term is present only for o
cross sections, whileŵa are present only ifa'R. The latter terms
are still unknown, but connected by Eq.~16!. Substitution of Eqs.
~17! into Eqs.~4! leads to the following expressions for strains

g115U18
e

2xaUa9
e

2 u9h
~a/ l !ea/h

1 w1,1
~a/ l !e

2g125r nu8
=

e

1w1,2
e

1 ŵ2,1

~a/ l !ea/h

g225w2,2
e

1
w3

R
e

hr115h@x3U29
e

2x2U39
e

2u9r t
~a/ l !e

1ŵ3,111w3,11
~a/ l !2e

#

hr125hF2u81
u8r n1w1,2

4R
1ŵ3,121w3,122

3~ŵ2,11w2,1!

4R G
e e ~a/ l !e ~a/ l !2e

hr225hF S ŵ3,22
ŵ2

R D
2

1S w3,22
w2

R D
2
G . (18)

e e

Note that the still unknownŵa are present along withwa—they

are distinct, so thathaŵa'wa . This allows one to neglect the
latter with respect to former inrab . Of course, when terms due t
ŵa vanish, terms due towa have to be retained—this is the ca
for g22 ~or for rab whenŵa themselves vanish—see the previo
step!. Underlined terms exist only for open sections while doub
underlined term only for closed cross sections. Let us keep in E
~18! only terms of ordere, denote them with bars and sort th
result into two arrays: those containing the one-dimensional st
measures (c̄T[$ḡ11,hr̄11,r̄12%) and those with only unknown
quantities which will be found in the process of minimizatio
(f̄T[$ḡ12,ḡ22,hr̄22%). This provides the motivation for writing
strain the energy density in the form Eq.~8! and resembles the
semi-inversion procedure that was used in Reissner and Tsa@1#.
Depending on the geometry of the cross section, the follow
distinct cases can be identified.

2.3 Strips and Open Cross Sections. Ironically, strips rep-
resent the only case where all three components ofc̄ are needed.
If we align the larger dimension of the strip along withx2 then
x350 andU3 drops from theḡ11, therefore the largest term with
U3 comes fromr̄11. The double-underlined term in Eqs.~18! is
absent~no constraint of single-valuedness!, so the largest terms
with u comes from r̄12. The resulting orders follow asaU29
'hU39'hu8'e, so c̄T5$U182x2U29 ,hU39 ,2hu8%, or in matrix
form c̄5Tstrip(s)a, whereTstrip is a 334 matrix.

For open cross sectionsU3 does not drop out from theḡ11 so
r̄11 can be neglected andaU39'e. Thus, the known strains depen
on the one-dimensional strain measures asc̄T5$U182x2U29
2x3U39,0,2hu8%, or in matrix form,c̄5Topen(s)a.

There is no constraint onf̄, so minimization is straightforward
yielding
456 Õ Vol. 67, SEPTEMBER 2000
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f̄ i52Pi j
21Sjkc̄k . (19)

Substituting the result into Eqs.~8!, we obtain the final expression
for the classical strain energy, given by

C5E TT~Q2SP21S!Tds (20)

whereT is eitherTstrip or Topen, depending on the cross section
question.

2.4 Closed Cross Sections.As described above,ḡ12 con-
tains nonzero terms of orderu8 neglected so thatc̄T5$U18
2x2U292x3U39,0,0%. Here the 334 matrix T, which connectsc̄
and a, effectively becomes a column matrixT5$1,2x2 ,
2x3,0%; the f̄ i are not arbitrary and proper constraints have to
imposed if the minimization is conducted in terms of these u
knowns. Forn-celled sections there are 43n such constraints—
four constraints per each cell. Single-cell formulas are deriv
below, but the procedure is equally applicable for multiple cells
well.

Let us consider most general case whenR'a ~the other cases
are analogous with obvious simplifications and lead to the sa
constraints!. We denoteJ[hŵ3,22hŵ2 /R, so that J ,25f3 .
Clearly rf̄3ds[rJ ,2ds50. Three other constraints stem from
the requirement of single-valuedness of displacements in Ca
sian coordinates, such thatrui ,2ds50. Note the analogy betwee
the imposed constraints and the introduction of one-dimensio
variables Eqs.~10!. First, 05ru1,2ds5rŵ1,2ds, so thatrf̄1ds
5u8rr nds. The other two constraints are a bit less straightf
ward. Using Eqs.~3! the following relations can be written fo
ŵa :

R @ŵ2,2ẋ21ŵ2ẍ21ŵ3,2ẋ31ŵ3ẍ3#ds50
(21)

R @ŵ2,2ẋ31ŵ2ẍ32ŵ3,2ẋ22ŵ3ẍ2#ds50.

Taking advantage of Eqs.~2! this can be rewritten as

R F ẋ2S ŵ2,21
ŵ3

R D1 ẋ3S ŵ3,22
ŵ2

R D Gds50
(22)

R F ẋ3S ŵ2,21
ŵ3

R D1 ẋ2S ŵ3,22
ŵ2

R D Gds50.

Recalling Eq.~16!, one finds that

R ẋaJds50 or R xaf3ds50.

Therefore, for a single-cell cross section functional to be mi
mized has the form

2L5 R @c̄1
2Q1112f̄ iSi1c̄11f̄ i Pi j f̄ j12l1~f̄11u8r n!

12f̄3~laxa1l4!#ds (23)

wherela are Lagrange multipliers; here and belowa51, . . . ,4.
For multiple-cell cross sections, such a set of four Lagrange m
tipliers has to be introduced for each cell, while minimizatio
should be conducted over the whole cross section.

Then the solution is given by

f̄ i52ci c̄12Pi j
21t j where ci[Pi j

21Sj 1 . (24)

Here tT5$l1,0,(laxa1l4)%[T̂(s)l. We can rewrite Eqs.~24!
explicitly in terms ofa andl, yielding

f̄ i52ciTaaa2Pi j
21T̂jala . (25)

Substituting Eqs.~25! into expressions for constraints, we obta
Transactions of the ASME
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2aa R @c1Ta2Ea#ds5la R @P1 j
21T̂ja#ds

2aa R @$1,xa%c3Ta#ds

5la R @$1,xa%P3 j
21T̂ja#ds (26)

hereE5$0,0,0,r n%. These are four linear equations forl in terms
of the one-dimensional strain measures:Fl5Ja, l5F21Ja.
Substituting the result into Eqs.~24! we obtain the solution forf̄
as

f̄52~cT1P21T̂F21J!a[Y~s!a. (27)

Finally, substituting Eq.~27! into Eq. ~23! yields the stiffness
matrix:

C5 R TTQT2YTPY1LE (28)

whereLa5F1b
21Jba ~LE corresponds to the terml1u8r n!.

From the present point of view, the derivation in Berdichevs
et al.@4# is equivalent to settingf̄3 to zero. It can be shown usin
Eqs.~24! and~26! that this assumption is appropriate for so-call
circumferentially uniform sections~CUS! ~i.e., when material
constants can be taken outside the integral and satisfying t
constraints onf̄3 renders it zero!. However, there are some cas
that the influence of this term does make a difference. To dem
strate this let us consider a box-beam with geometry and mat
properties taken from Smith and Chopra@9#. Two following con-
figurations are considered:

outer dimensions: heightb50.53 in.

width a50.953 in.

wall thickness: h50.03 in.

material properties: El520.63106 psi

Et51.423106 psi

Glt58.73105 psi

Gtn56.963105 psi

n l t5n tn50.42

antisymmetric: right and upper wall layup:~U!3 /~2U!3

antisymmetric: left and lower wall layup: ~2U!3 /~U!3

(29)
symmetric: right and left wall layup: ~U!3 /~2U!3

symmetric: upper and lower wall layup:~2U!3 /~U!3 .

Both antisymmetric and symmetric layups exhibit essentially
elastic coupling, and the one-dimensional stiffness matrices
diagonal.

The torsional rigidity can be significantly overestimated iff̄3 is
disregarded. This can be observed by comparing the result
Berdichevsky et al.@4# with the present ones and with the nume
cal results obtained from VABS Cesnik and Hodges@3#. The re-
sults of Berdichevsky et al.@4# are far too stiff in torsion relative
to VABS results while the present theory exhibits excellent agr
ment with VABS. Indeed, forh50.03 the difference is less tha
three percent~see Figs. 2 and 3!. With decreasing thickness~leav-
ing the other dimensions the same! analytical results converge t
the numerical results. In fact byh50.006 in the analytical, result
exceed the precision of 1000 six-noded finite elements in VAB
One should recall here that finite elements with large aspect ra
are notoriously fickle. We also note that the difference betw
Journal of Applied Mechanics
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the results of Berdichevsky et al.@4# and those of the present
asymptotically correct theory is practically independent of thick
ness, as can be seen Fig. 4.

It has to be emphasized that while the cases where the the
from Berdichevsky et al.@4# breaks down are quite rare, it might
actually create a false sense of security: For the considered sy
metric case torsional rigidity is overpredicted by a factor of two
On the other hand, another quite obvious approximation would
to set the hoop bending moment to zero. This can be interpreted
a thin-walled equivalent of the so-called ‘‘uniaxial stress’’ as
sumption~when all stresses in the cross-sectional plane are set
zero! that is quite common in beam theories, e.g., Rand@10# and
Kim and White@11#. As can be observed from Figs. 2 and 3, thi
assumption leads to an underprediction of their torsional rigidit
It has to be added that for the specific cases considered in B
dichevsky et al.@4#, the differences between our results and their
are negligible. Thus, for the sake of brevity, the excellent corr
lations published therein with experimental and numerical da
need not be repeated here.

Fig. 2 Torsional rigidity, antisymmetric layup hÄ0.03 in

Fig. 3 Torsional rigidity, symmetric layup hÄ0.03 in
SEPTEMBER 2000, Vol. 67 Õ 457
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The general conclusion can be drawn that, while for m
layups either ‘‘no bending shell strain measures’’ or ‘‘no ho
moment’’ might work quite satisfactorily, only the present theo
can insure correct results for all the cases.

Strain Field. Let us emphasize that for all types of cro
sections—even in ‘‘classical’’ approximation—the cross sect
is not rigid in its own plane! The in-plane strains are not zero b
are given by Eqs.~19! and ~27!. By the same token, unless on
deals with isotropy or similarly restricted case, the shear straing12
is nonzero and essential to the analysis, even without resortin
Timoshenko-like theories. On the other hand, within the precis
of this approximation,g11, r11, andr12 have very simple expres
sions, since they are given by appropriate components ofc̄.

Recovering Displacements.When there is no curvaturef̄T

5$w1,2,w2,2,hw3,22%, so oncef̄ is obtained this relationship ca
be integrated. In order to preserve the definition of on
dimensional variables one has to eliminate rigid-body motio
from this warping~i.e., *wids5*(w2x32w3x2)ds50!, this al-
lows one to definewi uniquely which then should be substitute
into Eqs. ~17! to obtain the full displacement field. Howeve
when R'a only ŵi , andw1 can be obtained, whereas knowin
f̄2 is not sufficient to recoverw2 andw3 individually. Thus, the
full displacement field cannot be recovered in this case. The la
situation is similar to the one described in Berdichevsky a
Misyura @12#.

2.5 Second-Order Terms. The next step of the asymptoti
procedure allows us to obtain terms in the strain energy up

e2( a
l )

2. While generally this is a cumbersome procedure, it tu
out that sometimes these terms are very significant—and e
calculated. This can be clearly seen from Eqs.~18!. There are two

terms present ing11 and g12 which are of ordere( a
l )(

a
h). While

we neglected those terms in the ‘‘classical’’ approximation, th
clearly can be quite large. We perturb the ‘‘classical’’ displac
ment field in a manner similar to the previous step in whichwi
was introduced into the displacement field. This led to the pr
ence of the unknownf̄ in the strain field. Here we introducew̃i ,
which in turn leads tof̃ in the strain. Let us note that due to th
Euler-Lagrange equations forwi , the leading cross terms betwee
wi and w̃i vanish in the functional. The term fromg11 exists for
open cross sections only; it is zero for strips, sinceh50. No
constraints are imposed onf̃, so the problem is similar to the
unconstrained problem for closed sections in whichf̃ i5ciu9h.
This leads to the one-dimensional strain energy per unit leng

Fig. 4 Difference in torsional rigidity, UÄ60 deg
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2FVlasov5aaCabab12Maaau91Gu92 (30)

whereCab is given by Eq.~20! for open cross sections and

Ma5E hs1iTiads
(31)

G5E h2~Q11
2 2ci Pi1!ds.

Note thatMa does not have a contribution fromw̃i , since terms
of order e are correctly obtained using only classical warpin
This generalizes the formulas provided in Volovoi et al.@5# where
I-beams were treated as an assembly of strips rather than
contour, and the results were extensively correlated with thr
dimensional simulations. For isotropy the formulas obtained
duce to Vlasov theory.

Finally, let us consider the termŵ2,1 from g12, which is of

order e( a
l )(

a
h) if R'a. If the cross section is open, there is n

constraint onw̃, so by choosingw̃1,25f̃12ŵ2,1 ~heref̃1 refers to
the solution for Vlasov correction!, this term can be killed. Theo
retically, for closed sections this is not true ifrŵ2,1ds is not zero.
Value of this integral depends on the constraints imposed on c
sical warping. Using constraints that are chosen so that warp
does not affect the definition of one-dimensional variables, it c
be shown that for a closed contour of a constant curvat
rŵ2,1ds50. For a general geometry this is not so, but constra
can be adjusted appropriately. Therefore, this term is not expe
to play a significant role.

3 Conclusions

Using small parametersah and h
a , which are inherent to thin-

walled beams, and without appeal to anyad hoc geometric as-
sumptions whatsoever, asymptotically correct theories are der
for thin-walled anisotropic beams. These theories include clos
form expressions for cross-sectional stiffness constants as we
recovering relations for strain~and displacement when possible!.

It is noted that the term ‘‘asymptotical correctness’’ concerni
an approximate solution denotes its agreement to a specified o
in a small parameter with an asymptotic expansion of the ex
solution in that parameter. Asymptotical correctness is the m
important characteristic of any approximate solution.

The resulting Vlasov-like theory for beams with open cro
sections is a generalization of the previously published theory
I-beams in Volovoi et al.@5#. However, unlike any existing theory
for closed sections, the effects of shell-bending strain meas
are included herein and their importance is demonstrated.
shown that the Vlasov effect for strips and beams with clos
cross section is negligible.

Unlike most treatments of thin-walled beams in the literatu
the present results are simultaneously obtained for open
closed-section anisotropic beams, including strip-beams. The
nificant differences entailed by these different geometries
shown to be naturally resolved within the same asymptotic fram
work. Now that an asymptotically correct theory is in place f
thin-walled beams, one can undertake critical assessment of
viously published theories of thin-walled beams.
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On Torsion of Closed Thin-Wall
Members With Arbitrary
Stress-Strain Laws: A General
Criterion for Cross Sections
Exhibiting No Warping
Warping due to torsion of closed thin-wall elastic members having constant thickne
investigated under the assumption of small strain but with arbitrary isotropic sh
stress-strain laws. Based on a derived general criterion, it is shown that there exi
class of cross-sections which undergo no warping. For cases where warping exis
example of simplified calculations, using the derived expressions, is presented for
ing of a thin-wall rectangle.@S0021-8936~00!03503-0#
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1 Introduction
The problem of torsion has attracted attention for some t

and has been considered under different aspects~Day @1#, Podio-
Guidugli @2#, and Ericksen@3#! both for linear or nonlinear behav
ior ~see Truesdell@4#!. Thin-walled constructions may be of inte
est, as indicated below, not only for technical applications
traditional engineering but also in such a new field as nanote
nology, where the absence of warping may be of special inter
for molecular thin-wall structures.1

In the present paper warping in thin-wall constructions of co
stant thickness is considered. We restrict here the problem
members undergoing small strains but governed by arbitrary
tropic shear stress-strain (t2g) relations. For experimental con
sideration of physical nonlinearity in real materials, see Bell@7#.

While it is known that the absence of warping is possible o
for circular cross sections~or circular rings!, under the thin-wall
approximation the situation changes dramatically. It is shown
thin-wall constructions possessing the property of no warping m
be convex as well as nonconvex.

Finally for the case where a member does not satisfy the es
lished criterion, based on the derived expressions, a simple
ample of calculations of warping of a thin-wall rectangle is a
presented.

2 General Relations
We consider below the standard Saint-Venant representa

for a prismatic member undergoing torsion about thez-axis such
that all cross sections lie initially in thex-y plane. Lettingg
andt,

g5gxi1gyj , t5txi1tyj , (1)

be vector fields independent ofz,

1While a classical mechanics approach was recently used by Yakobson, Br
and Bernholc@5# and Falvo et al.,@6# in investigating the buckling stability and
corrugation of carbon nanotubes due to bending, no such study of torsion appe
the literature.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ap
13, 1999; final revision, May 5, 2000. Associate Technical Editor: J. T. Jenk
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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g5g~x,y! t5t~x,y!,

~whereg and t represent angle changes and stress compone!
the strain and stress tensors,e andT, are given by

2e5S 0 0 gx

0 0 gy

gx gy 0
D T5S 0 0 tx

0 0 ty

tx ty 0
D . (2)

Using dyadic notation, we may represent~2! conveniently in the
following form:

2e5g^ k1k ^ g, T5t^ k1k ^ t. (3)

Here k is the unit vector corresponding to the axis of rotatio
From ~1! and ~3! it follows that

g52e•k. (4)

We note that the equilibrium equation“•T50 is then reduced
to one scalar equation

“̃•t50, ~“̃5]xi1]yj !. (5a)

i.e.,

]tx

]x
1

]ty

]y
50. (5b)

Representing the displacement vectoru as the out-of-plane
warping w, ~independent ofz! and the in-plane displacementũ
due to rotation~which depends onz through the angle of rotation
Qz, whereQ is the unit angle of twist!,

u5wk1ũ, ũ5Qzk3r, w5w~x,y!, (6)

wherer[xi1yj is the in-plane position vector measured from t
axis of rotation. Using the definition of the small strain tens
2e5“^ u1u^“, it follows from ~4! and ~6! that

g5“̃w1]zũ5“̃w1Qk3r, (7a)

from which

“̃w5g2Qk3r, (7b)

or, in coordinate form,

kec,

rs in

r.
ns.
essor
on,
li-
© 2000 by ASME Transactions of the ASME
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]x
5gx1Qy ,

(7c)
]w

]y
5gy2Qx .

The structure of Eq.~7b! bears two consequences:

Consequence i„‘‘Global compatibility’’ …. We consider the
arbitrary contourL as shown in Fig. 1~a!. Applying the compat-
ibility condition rL“w•dL50, substituting ~7b! and using
Green’s theorem, we obtain

R
L
g•dL52QA, (8a)

whereA is the area within the contour.

Consequence ii„‘‘Local compatibility’’ …. Choosing a differ-
ent contour,L* , surrounding an arbitrary areaA* in the vicinity
of a cross section point~see Fig. 1~b!! and applying Stoke’s theo
rem to~8a!, we obtainrA*“3g•kdA52QA* , which is equiva-
lent to~8a! for the chosen contour. SinceA* andL* are arbitrary,
we may contract the contourL* to a point, from which we obtain

k•~“3g!52Q. (8b)

Note that one may formally obtain this relation by taking the ro
of ~7b!.

In what follows below, we consider isotropic elastic materia
either having physical-nonlinear behavior

t5 f ~ ugu!g, (9a)

or linear behavior

t5Gg. (9b)

It will be seen below that the determination of warping is ind
pendent ofany specificconstitutive relation.

3 The Closed Contour Thin-Wall Approximation
We consider below a closed thin-wall construction who

cross-section consists of closed curvilinear segments in thex-y

Fig. 1
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plane. One may thus imagine a thin ring of arbitrary shape. S
eral examples of interesting geometrical shapes will be discus
further.

The contour is then determined by the middle-curve of the cr
section; the position of a given point on this curve is defined
the arc-length coordinate,S and the cross section thickness byt
5t(S).

The usual approximation forclosedthin-wall structures is2 ~see
Fig. 2!:

t5t~S!et , uetu51, (10)

whereet is the unit tangent vector to the contour curve lying in t
x-y plane. Equation~10! obviously satisfies the boundary cond
tions Tn50, wheren is the normal to the contour, i.e., the ab
sence of the traction on the lateral surfaces of the cylinder. Ph
cally, t is the average shear stress through the thin-wall cr
section. The equilibrium equation is then reduced to conserva
of the shear fluxq along a section of the cross section:

q5tt5const.

~For multicell cross section shapes, the constant fluxes are di
ent for any given segment.!

Due to constitutive Eq.~9!, the shear vectorg has a represen
tation similar to~10! ~see Fig. 2!

g5g~S!et , (11)

where the scalar constitutive relation relatingt andg is

t5 f ~g!g[F~g!. (12)

Neglecting the thickness of the contour segment, we rew
relation ~7b! in the form

dw

dS
5et•“w5et•g2Qet•~k3r!. (13)

When the contour line consists of straight segments ano
representation is simpler. We first note thatet•(k3r)5k•(r
3et)5r' , wherer' is the distance from the axis of rotation to
straight segment~or its prolongation! ~see Fig. 3!. Therefore, we
have

dw

dS
5g2Qr' . (14)

The relation ~14! is crucial for further consideration of the
warping,w.

We observe in passing that since, under the thin-wall appro
mation,w is assumed to be a function only of the arc length, i.

2The present paper by no means is devoted to derivation of this well-kn
approximation which is discussed in any standard reference~see, e.g., Timoshenko
and Goodier@8#!. Obviously, from the three-dimensional elasticity point of view, th
approximation corresponds to the main term in the asymptotic expansion. How
for molecular structures with widths of several atomic/molecular spaces, one
sumes this as a rational approximation relating shear force and angle of shear
corresponding molecular lattice/structure.

Fig. 2
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w5w(S), the local compatibility condition becomes irrelevan
Therefore only the global compatibility condition is required
remove any ambiguity inw.

4 Constant Thickness Doubly Connected„Single-Cell…
Section

For a wall of constant thickness, (t(S)5const) t is constant,
and therefore,g is necessarily a constant, which can be eas
determined from the ‘‘global compatibility,’’ relation~8a!, for the
closed contour. Thus, using

R g•dL5g R et•dL5gP,

~whereP is the perimeter of the contour!, we obtain

g5
2QA

P
. (15)

We emphasize here that no specifict-g relation was used in de
riving ~15!.

We then rewrite~14! as

dw

dS
5QS 2A

P
2r'D . (16)

We observe that since axial displacement in the torsion prob
is determined up to an arbitrary translation along the axisz, with-
out restriction of generality, we may assumew50 at some point
at the contour.~It is convenient to choose this point by conside
ations of symmetry if such symmetry exists.! We note that a re-
lation corresponding to~16! is known for thin-walllinear elastic
multicell structures~see, for example, Murray@9#!. However, as
we have shown here, this relation is equally valid for physica
nonlinear elastic members undergoing small strains.

4.1 Shapes of Contours With No Warping. We now in-
vestigate the geometrical shapes of contours for whichw[0.
Since at some point of the contourw50, thenw[0 if and only if
dw/dS[0. Thus, from~16! we have

r'5const5
2A

P
. (17)

Note that any curve may be approximated as the limit case
polygon. Therefore, without restriction of generality, we may
strict our attention to considerations of polygons which sati
relation ~17!.

We note that relation~17! demands that the distance from an
side of such a polygon to the point representing the axis of r
tion be the same forall sides of the polygon.

We first considerconvexpolygons, both regular and irregula
polygons.

~i! It is clear that the class ofregular polygonspossesses the
propertyr'5const~Fig. 4!; by means of simple triangulation, w
find r'52A/P is always true for any such polygon.

~ii ! We now generalize to the class of irregular convex po
gons which are symmetric with respect to thex and y-axes. Ex-
amples of such polygons are shown in Fig. 5.~It follows that the
center of twist coincides with the origin of the axes,O.! Upon
drawing an inscribed circle of radiusR with center atO touching

Fig. 3
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all sides of the polygon, conditionr'5cosnst is satisfied auto
matically sincer'5R. To show thatR52A/P we triangulate the
area byN triangles~N being the number of sides of the polygon!;
the area ofk-th triangle isAk5

1
2akR, whereak is the length of its

side. We then have

A5(
1

N

Ak5
R

2 (
1

N

ak5
RP

2
. (18)

Clearly, a circle corresponds to a regular polygon withN→`.
As an example of anonconvexpolygon we consider below the

contour of a six-pointed~David! star.
It is obvious thatr'

(D) for the contour of this star is the same a
that for the ‘‘inscribed’’ hexagonr'

(h) ~Fig. 6!. It is easy to see~by
considering triangles!, that the areaAD of the contour of the star is
twice the areaAh of the inscribed hexagon; moreover, the perim
eter PD of the star is twice the perimeterPh of the hexagon.
Since r'

(D)5r'
(h)[r' and, since for the hexagon 2Ah /Ph

5r'
(h) ,

r'
~D !5

232Ah

2Ph
5

2AD

PD
.

Fig. 4

Fig. 5

Fig. 6
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It follows that a closed thin-wall member whose cross-secti
is in the shape of a six-pointed star will not warp under torsio

4.2 Generalization of the Results. Based on the criterion
of ~17!, we may generalize the results. We first recall that t
criterion for no warping requires that the distancer' from the
center of rotation to the sides~or their prolongation! of the section
be constant. This criterion may be reformulated as follows:

Fig. 7

Fig. 8
Journal of Applied Mechanics
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A closed thin-wall section of constant thickness will not wa
under torsion provided there exists an inscribed circle (who
center coincides with the center of rotation of the section) wh
is tangent to all sides (or their prolongation) of the section.

To show that the constant52A/P, consider, for example, Fig
7, where one quadrant of the section is shown. Then, by ‘‘Kep
triangulation,’’ it is clear that relation~18! holds where hereak is
as shown in the figure.

Thus, there exists also an infinite number of star-like~noncon-
vex! sections possessing the required symmetry which do
warp under torsion; some of these are shown in Fig. 8.

Such sections may have technological applications, for
ample, as cooling or heating elements since they possess relat
large surface areas for a given volume.

4.3 An Example of Simplified Calculations of Warping.
As an example of the simplified calculations using the above
rived relations for a section undergoing warping, we conside
rectangle with sides 2a and 2b, a.b, ~Fig. 9!. Then,A54ab,
P54(a1b), r'

(a)5b andr'
(b)5a, wherer'

(a) andr'
(b) denoter'

to the sides with length 2a and 2b, respectively.
We then write relation~16! as

dw~a!

dS
5QS 234ab

4~a1b!
2bD5Q

b~a2b!

a1b
,

(19)
dw~b!

dS
5QS 234ab

4~a1b!
2aD52Q

a~a2b!

a1b
.

Note here, that although constantsdw(a)/dSÞdw(b)/dS, therefore
dw/dS is a piece-wise linear function of the arc length~see Fig.
7!. These constants satisfy the following relation:

a
dw~a!

dS
52b

dw~b!

dS
. (20)

Now, due to the symmetry of the contour,w50 at the middle
point D of the side having length 2a. AssumingQ.0 and letting
S be positive in the counterclockwise direction, sincedw(a)/dS
.0, the warping,w, increases starting from this point up to th

Fig. 9

Fig. 10
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corner E; at the corner the derivative changes the sign andw
decreases~sincedw(b)/dS,0!; due to~20! it then becomes zero
exactly at the middle pointF of the side with the length 2b. The
maximal value ofw is clearly

wmax5a
dw~a!

dS
5Q

ab~a2b!

a1b
. (21)

A three-dimensional view ofw is shown in Fig. 10.
It is emphasized that the above results is known for a lin

elastic single cell according to engineering theory~see, for ex-
ample, Murry@9#! but, being purely kinematic in nature, is inde
pendent of any particular stress-strain relations.
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A Device for Evaluating the
Multiaxial Finite Strain
Thermomechanical Behavior of
Elastomers and Soft Tissues
Described here is the design and development of a computer-controlled device capa
measuring the finite strain thermomechanical behavior of a general class of polym
materials including elastomers and biological soft tissues. The utility of this device
thermoelastic and thermophysical investigations is demonstrated by the measurem
the in-plane stress-stretch response and in-plane and out-of-plane components of th
diffusivity of neoprene rubber undergoing finite deformations.@S0021-8936~00!01603-2#
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Introduction
The thermomechanical behavior of elastomeric, and specific

rubber-like, materials has generated considerable interest in
mechanics community for close to two centuries. With the adv
of laser, ultrasound, and microwave-based medical device
similar interest has recently arisen in the thermomechanical
havior of soft tissues~@1#!. A general thermomechanical analys
of these material behaviors requires, of course, both multia
thermoelastic and thermophysical data. Likewise, formulation
nonlinear constitutive relations necessitates appropriate theore
frameworks to design and interpret the requisite experiments~@2#!.
For example, theory reveals that a complete description of rev
ible finite strain thermomechanical behavior requires identificat
of two independent constitutive functions~@3#!, the Helmholtz
potential

c5ĉ~C,T!, (1)

and the referential heat flux vector

q05q̂0~C,T,“0T!, (2)

whereC (5FT
•F) is the right Cauchy-Green deformation tenso

F (5]x/]X) the deformation gradient tensor,T the temperature,
“0T (5]T/]X) the referential temperature gradient, andx andX
the position of a material particle in the current and refere
configurations, respectively. Stress-strain-temperature relation
sult from derivatives ofĉ with respect toC. Although a number
of functional forms forĉ have been suggested~@4–7#!, a widely
accepted form remains elusive due, in large part, to the contin
lack of multiaxial thermoelastic data. That is, most investigat
have focused on describing the available uniaxial data~@8–11#!
and hence the peculiar one-dimensional Gough-Joule and
moelastic inversion effects. Recently, however, Ogden@7# pro-
posed a method for findingĉ as a function of biaxial stretches an
temperature, whereas Humphrey and Rajagopal@12# showed that
in-plane biaxial tests allow measurement of thermoelastic
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2To whom correspondence should be addressed. Biomedical Engineering

gram, Texas A&M University, 233 Zachry Engineering Center, College Stat
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Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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sponse functions~e.g.,]ĉ/]I C whereI C5tr C! similar to the iso-
thermal results of Rivlin and Saunders@13#. Both cases require
measuring biaxial stress and stretch at multiple temperatures

Alternatively, there has been little attention to the possible fin
strain dependence of the heat flux. Rather, most reports ass
Fourier conductionq(x,T)52k(T)“T whereq(x,T) is the spa-
tial heat flux,“T (5]T/]x) the spatial gradient of temperature
and k(T) the scalar~i.e., isotropic! spatial thermal conductivity
~@14#!. For finite strains, referring the conductivity tensor to t
reference configuration simplifies material symmetry consid
ations, and thereby facilitates the formulation of general const
tive relations. Thus, note thatq5(1/J)F•qo , where J5detF.
Moreover, a generalized Fourier conduction has the form

q~x,T!5
1

J
F•~2K ~C,T!•“0T~X,T!! (3)

whereK (C,T) is the referential thermal conductivity tensor. O
the tractable finite strain tests~e.g., combined extension and to
sion of a cylinder, membrane inflation, etc.!, the in-plane biaxial
extension of a thin rectangular sheet~@13,15#! is also convenient
for thermophysical testing. Not only is the resulting strain fie
homogeneous in the central region and the state of stress pl
thin specimens facilitate isothermal testing and measuremen
thermal diffusivity. For example, Doss and Wright@16# recently
demonstrated that the transient flash diffusivity method~@17#! may
be extended to measure the diagonal components of the sp
thermal diffusivity tensora of thin sheets of stiff polyvinyl chlo-
ride ~PVC!. Specifically, the flash diffusivity method yieldsa via
the spatial energy equation which, in the absence of stress po
and volumetric heat addition, is

dT~x,T!

dt
5a~C,T!:“~“T~x,t !! (4)

wheret is time. For materials in mechanical equilibrium, the co
vective terms within the material are negligible, of course, and
total derivative on the left-hand side of Eq.~4! reduces to a partia
derivative with respect to time. Appendix A contains an outline
the one-dimensional solution of Eq.~4! that Parker et al.@17#
employed in the initial description of the flash method. Here, E
~4! is solved using a finite difference formulation as part of
Marquardt parameter estimation algorithm for both the traditio
~one-dimensional! flash method~measuring the out-of-plane com
ponenta33 only! and the extended flash method~measuring the
three diagonal components ofa!. This allows for more accurate
representation of the boundary conditions. Appendix A also o
lines this model. Regardless, note that finite strain constitu
relations are more easily formulated in terms of the referen

86.
Pro-
n,

r.
sh.

essor
on,
li-
000 by ASME SEPTEMBER 2000, Vol. 67 Õ 465



y

l

a

o

i

o

f
a
s
i
r

e

n

u

me
The
that
ces.
rate

cou-
oles
d-
ave

ism
is
a

ach
ear

are
m
a-

d
st-

en

in
l as
sis

re-
ten-
r

me-
n of
are

d
’’
ear

po-

al
thermal diffusivity a0 . Fortunately, one can infera0 from
the measurablea via a5(1/J)F•a0•FT where a0(C,T)
5K (C,T)/(r0cF(C,T)); herer0 is the referential mass densit
andcF the specific heat at constant deformation.

There is, therefore, a clear need for a multiaxial thermom
chanical test system that can exploit the available theoretica
sults. This paper describes the design and construction of a
device capable of both in-plane biaxial thermoelastic testing
measurement of the orthogonal components ofa. Illustrative data
are presented for neoprene subject to equibiaxial stretch ratil
[l15l2 ~l i5 l i /Li , no sum oni, with l i and Li being current
and reference lengths, respectively! with lP@1,1.5#, at tempera-
ture levels of 21 and 41°C.

Experimental System
Figure 1 is a schema of the overall optical-thermomechan

system. The system consists of five subsystems, one each fo~a!
biaxial loading,~b! in-plane strain measurement,~c! environmen-
tal control, ~d! flash illumination, and~e! point-wise temperature
measurement.

Biaxial Loading System. The load frame is machined from
one piece of mild steel to outer dimensions of 45.7345.7 cm with
a 2.54 cm square cross section. The outer and inner surface
ground to ensure that opposing sides are flat and parallel.
frame is mounted on an optical table using a standard 2.54
diameter, 15.2-cm long support rod at each corner. A pair of h
zontal through-holes~1.27-cm diameter and 4.45 cm apart! are
centered on each side of the frame~Fig. 2~a!! such that the axes o
any pair of holes are collinear with those of the opposing pair
perpendicular to the other two pairs. Each of the eight hole
fitted with a 1.91-cm-long linear recirculating ball bearing spec
cally designed for linear travel of shafts with minimal transve
play.

Nearly uniformly distributed in-plane biaxial forces are appli
to the square specimen through four load carriages~Fig. 2~b!!.
Each edge of the specimen is attached to a single carriage u
Kevlar thread~or silk suture for biological tissues!. The load car-
riages consist of two parallel 0.635-cm-diameter solid, harde
stainless steel rods. Each rod is supported in one of the aforem
tioned through-holes by one of the linear bearings in the lo
frame and a neoprene O-ring sandwiched between two R
bearings, which form a watertight seal for the environmen
466 Õ Vol. 67, SEPTEMBER 2000
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chamber. Proper alignment of this chamber within the load fra
ensures free and smooth translation of the load carriages.
outside end of each pair of rods is attached to a cross bar
separates the shafts and facilitates the application of axial for
The inside end of each load carriage consists of three sepa
aluminum pieces: a cross bar that connects the two rods, a
pling bar, and a T-bar that has a series of equally spaced h
~0.75 cm apart! that serve as rigging points for the specimen loa
ing threads. Two of the load carriages, one on each axis, h
watertight and temperature compensated (TP@229,93#°C) load
cells mounted between the cross bar and coupling bar.

The last component of the loading subsystem is the mechan
for inducing axial load. Each of the four carriage assemblies
independently loaded via a 1-mm lead ball-screw driven by
stepper motor. A ball-nut attached to the outer cross bar of e
load carriage converts the rotation of the ball-screw into lin
displacement of the carriage assembly. The stepper motors
individually controlled by a four-axis indexer card in the Pentiu
personal computer~PC!. Such a drive system allows implement
tion of fully automated stretching protocols.

Strain Measurement. In-plane finite strains are measure
optically by tracking the position histories of four small, contra
ing markers that are affixed to the bottom surface of the specim
~Fig. 2~b!!. This approach has been described previously~@18#!,
and is sufficient because of the homogeneity of the strain field
the central region, as confirmed via pilot experiments as wel
by finite element analysis. For example, finite element analy
~ABAQUS!, assuming a Mooney-Rivlin material response,
vealed that the strain field is essentially homogeneous and ex
sional ~, 5 percent shear! in the central sixteenth of the plana
area of a square elastomeric specimen~@19#! that is loaded by five
equidistant point loads at each edge. A CCD video camera, fra
grabber board in the PC, and custom software track the positio
each of the four markers at the 30 Hz frame rate. The softw
algorithm, based on Downs et al.@20#, uses a correlation metho
to locate the markers first in a ‘‘coarse’’ and then in a ‘‘fine
search region. The marker positions serve as input to a bilin
isoparametric interpolation algorithm that provides the com
nents ofF in the central region at each configuration~see Appen-
dix B!. The components ofF provide information for feedback
control ~described below! of the thermoelastic tests at therm
equilibrium. In thermophysical tests, the components ofF are reg-
Fig. 1 A schematic drawing of the overall experimental system
Transactions of the ASME
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istered prior to the flash illumination~i.e., at mechanical equilib-
rium!, which only slightly perturbs the strain field.

Environmental Chamber. The environmental chamber a
lows testing of the sample in air or liquid at nearly constant te
peratures~61°C!. The chamber is constructed from a 1.27-c
thick polycarbonate sheet and sealed with silicone adhesiv
prevent leakage of the solution. With outside dimensions 4
340.037.62 cm, the polycarbonate shell fits inside of the lo
frame ~Fig. 2~a!!. Though not shown for clarity, top and bottom
plates are screwed onto the polycarbonate shell and silicone
ber gaskets form seals between the plates and shell.

The top plate of the chamber has a central port that allows
flash lamp~described below! to be placed in close proximity to
the specimen, thereby ensuring that enough energy is absorbe
the sample to obtain a desirable temperature rise on its bo
surface. The separation between the lamp and an approxim
2-mm-thick specimen may be adjusted between 1.0 and 3.0 cm
addition, the top plate allows access by the thermocouple pr
for measurement of the temperature field on the bottom face o
sample. The bottom plate has a central 9639631.5 mm glass
window that allows the camera to view the aforementioned ma
ers for strain measurement. Additionally, the bottom plate
drains to remove liquid from the chamber.

The chamber can be maintained between room temperature
90°C by a 750 W, 1.27-cm-diameter, 30.5-cm-long submers
heater that is mounted in the chamber~Fig. 2~a!! and modulated
by a thermostatic controller.

Fig. 2 Biaxial extension device. Panel „a… is an oblique view of
the device where „1… camera, „2… load carriage, „3… environmen-
tal chamber, „4… heater, „5… Kevlar threads, „6… load frame, „7…
motors, „8… motor supports, and „9… limit switches; in-plane di-
rections defined as 1 and 2. Panel „b… is a schema of „1… the
specimen with centrally placed tracking markers, „2… Kevlar
threads, „3… T-bar, „4… coupling bar, „5… load cell, and „6… flash-
bulb and reflector, as seen from below.
Journal of Applied Mechanics
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Temperature Measurement and Flash System. The prin-
ciple of the flash technique for measuring thermal diffusivity
described elsewhere~@21–23,17,24#!. Briefly, a flash system con
sists of a radiant energy source~e.g., a flash lamp or pulsed lase!
capable of delivering a short burst that heats one face of the sp
men, and a probe to measure the associated temperature histo
the opposite face. Here, a linear xenon flashtube, mounted i
aluminum reflector, illuminates the top face of the specim
When the in-plane components ofa are to be measured, a 5
350 mm aperture plate with a central 20320 mm opening is
mounted between the source and the specimen; the apertu
removed for measurement ofa33 alone. Three 0.25-mm-diamete
E-type thermocouple probes are mounted in an aluminum bar
form the apexes of a right isosceles triangle having two 15-m
sides, and when aligned with the aperture, they measure the
perature at the center of the projection of the lighted area an
two points outside this projection along the two in-plane axes.
measurements ofa33 alone, only the central thermocouple outp
need be used. A small amount of high thermal conductivity s
cone paste is used to insure good contact between the the
couple probe and the specimen surface. The fixture is attac
through the port in the top plate of the environmental chamber
a micrometer head that can raise or lower the thermocouple
required. A second CCD camera and mirror~not shown! monitors
the contact between the specimen and the thermocouples.

Data Acquisition and Control. Eight independent channel
of information are recorded simultaneously using an analog
digital ~A/D! conversion board in the PC. The A/D board h
high-gain amplification and a cold junction compensation circu
specifically designed for acquisition of thermocouple data,
corded on one of the eight channels. The E-type thermocou
occupy three channels, whereas two T-type thermocouples, o
the glass window covering the flashbulb to mark the flash ev
on the data file and another above the specimen to record
ambient temperature, occupy two channels. The two load cells
connected to a signal conditioner, the output of which occup
the last two channels.

The strategy to control the biaxial finite deformation involv
actuating the two opposing motors in one stretching direction
constant velocity and varying the velocity of the two motors in t
orthogonal direction so that the measured stretch in that direc
is within a small errore of the desired stretch. Hence, letld be the
desired stretch~eitherl1 or l2!, la be the measured stretch, an
d the difference betweenla andld . If udu<e, then the velocities
of the two motors on that axis are set to zero. Ifudu.e, however,
then the motor velocities must be adjusted to bringla back to
within e of ld . The velocitiesv of the controlled motors are
adjusted proportionally tod usingv5Gd, whereG is a suitably
valued parameter determined by trial and error during prelimin
tests until the control of the specimen is acceptable. IfG is too
small, the stepper motors move continuously in the same di
tion, indicating thatv is too low and possibly not keeping th
stretches withine. Conversely, ifG is too large, the motors oscil
late, indicating an overshoot ofld , thus requiring the motors to
reverse. A suitable value ofG between these two extremes shou
thus be selected. Note that ifd.0, thenla.ld and the direction
of rotation of the motors must be such thatla is decreased; ifd
,0 then the specimen must be stretched more. Once the con
ling velocity is determined, its value is sent to the motor control
card. The control cycle is repeated throughout the experimen
30 Hz by calculating the new stretch ratios, determining the c
trolling velocity, and sending the new velocity to the motor co
troller card.

Specimen Preparation. Thermoelastic tests were performe
on specimens measuring 50-mm square cut from 1.6-mm-th
precast sheets of high-grade neoprene rubber with a Shore A h
ness value of 35–45~McMaster Carr!. Outside of the biaxial de-
vice, each edge of the specimen was sewn to a T-bar usin
SEPTEMBER 2000, Vol. 67 Õ 467
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0.254-mm-diameter sewing needle and 0.2-mm-diameter Ke
thread. Six holes spaced about 3.75 mm apart and 10 mm from
edge of the specimen were used on each edge. Four white 200mm
spots of titanium white acrylic paint were placed in the cent
535 mm square~i.e., 1/100th of the planar area! of the specimen
on the bottom face of the black specimen. The T-bars were t
attached to the coupling bars~Fig. 2~b!!. Prior to thermoelastic
testing, each specimen was systematically preconditioned, t
mally and mechanically: each neoprene sample was held a
in-plane equibiaxial stretch ratio ofl51.45 at 41°C for 24 hours.
The reduced range of temperatures examined in these first m
surements on neoprene, as compared with the 90°C capabilit
the chamber, are the result of the reduced tear resistance of
prene at elevated temperatures. Figure 3 shows the stress r
ation response of a typical specimen during preconditioning. T
relaxation response was 86 percent complete after two hours
more than 95 percent complete after 12 hours. Immediately
lowing the 24 hours of such preconditioning, the sample was
loaded and subjected to thermoelastic testing. Preconditioning
the thermophysical tests was similar. New specimens were
conditioned at an equibiaxial stretch ofl51.52 at 25°C for 16
hours.

Illustrative Results

Stress-Strain Response. Figure 4 illustrates the ability of the
system to execute well the prescribed protocols in~a! constantl1
tests, withl151, 1.2, 1.4, and~b! proportional stretch tests wher
(l221)/(l121)5m, with m52, 1, 0.5; equibiaxial stretch is a
special case withm51. Each of the tests consisted of three cycl
at a frequency of about 0.017 Hz. The repeatability over the th
cycles for each type of test illustrates the robust control and
effect of preconditioning. Recall that the automated control of
motors was based on the video strain measurement of the in-p
stretches, thus permitting corrections at 30 Hz.

For homogeneous principal extensionsF5diag@l1,l2,l3# and
J5detF5l1l2l35r0 /r ~wherer0 andr are the reference and
current mass densities, respectively!, hencel3 can be determined
at each temperature, givenr5r(T). Data obtained from Anter
Laboratories~Pittsburgh, PA! on neoprene samples tested atT
P@20,60#°C suggest that, to first order,

r~T!5r0@11b~T2T0!#21 (5)

wherer051.317 g/cm3, b53.91531024(°C)21, andT0520°C
is the reference temperature at whichr0 is measured. Figure 5
shows illustrative in-plane Cauchy stress as a function of modi
stretch ratiol1* (5J21/3l1) for one sample at three temperatu
levels (T525,33.2,41.2°C). The stretches are calculated in

Fig. 3 Stress relaxation curve of a neoprene rubber specimen
during preconditioning
468 Õ Vol. 67, SEPTEMBER 2000
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central region of the specimen with respect to the stress-free
erence configuration at the reference temperature. The chara
istic nonlinear behavior is well known and has been well doc
mented in the past~@8,25,26,11#!. Similar measurements on
specific materials of interest will add greatly to the existing the
moelastic database that is needed to evaluate current constit
thermoelastic models~@5,12,7#! as well as to develop new consti
tutive descriptors of other such materials.

Thermal Diffusivity. Two types of tests illustrate the ability
of the device to measure thermal diffusivity of specimens su
jected to finite in-plane deformation: measurements of~a! a33 for
three specimen thicknesses and multiple equibiaxial stretches
~b! the diagonal components ofa as a function of finite equibi-
axial deformation at room temperature.

First, a33 was measured for three neoprene specimens of no
nal thicknesses of 1.6, 2.4, and 3.2 mm. Following preconditio
ing and then registration of the unloaded reference configura
~i.e., recording the marker positions! at T0'21°C ~i.e., ambient
room temperature!, the top surface of each specimen was su
jected to a series of five pulses from the flash lamp, each separ
by ten minutes to allow the specimen to regain thermal equi
rium. Figure 6 shows a typical bottom surface temperature
sponse following the flash. For a bottom surface temperatureTb ,

Fig. 4 Illustrative in-plane stretches l1 and l2 for computer
controlled equibiaxial, proportional, and constant l1 stretching
protocols. Data are for three cycles each „cycle 1: ¿, 2: n, 3:
s…, thus showing reproducibility and robust control.

Fig. 5 Typical Cauchy stress-stretch curves for neoprene at
three temperatures for equibiaxial stretch tests
Transactions of the ASME
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the temperature excessu5Tb2T0 has been scaled by the max
mum temperature excess measured on the bottom surfaceumax
~typically about 3°C!. Time has been scaled byt1/2 ~typically
about 4 s!, which is the time at which the bottom surface reach
umax/2. After the five pulses, the specimen was extended equ
axially to the next desired stretch, its marker positions recorde
this equilibrium configuration following stress relaxation, and t
flash procedure repeated. Once all data were collected at r
temperature, another series of stretch and flash data were colle
at 40°C. After increasing the temperature level, the sample
allowed to reach thermal equilibrium prior to inducing mechanic
stretch.

Since the transient temperature rise on the bottom surface
to each flash was about 3°C and of similar magnitude on the
face, after a brief initial transient~10 ms!, data were collected a
nearly mechanical and thermal equilibrium. Here, the bottom s
face temperature history was measured directly anda33 was cal-
culated using the Marquardt parameter estimation algorit
coupled with a finite difference solution of Eq.~4! outlined in
Appendix A. Figure 6 shows close agreement between the m
surements, the temperature history calculated as part of the
reduction, and that calculated assuming the boundary condit
originally used by Parker et al.@17# and the value ofa33 deter-
mined by the Marquardt data reduction. The mean values ofa33
found in these one-dimensional measurements are 0.119 mm2/s at
21°C and 0.117 mm2/s at 40°C. These values are within five pe
cent of those measured by Anter Labs and match well the tr
with temperature, though this decrease is within the scatter of
measurements and thus, not statistically significant.

A second set of tests measured the diagonal componentsa
for three specimens with a nominal thickness of 2.4 mm. Aga
following preconditioning, each specimen was tested at t
equibiaxial stretch states of approximatelyl51.03 and 1.52. A
minimum of five flash tests were performed at each of the t
deformation states. Figure 7 shows the measured bottom-sur
temperature history of a typical test along with the best-fit resu
based on the three-dimensional finite difference model. Aga
there is close agreement between the data and the model. Be
of the difference in the temperature response rate and levels
the central and lateral thermocouples, the variables have been
in dimensional form.

At the smaller deformation (l51.03),a33 is found to be 0.116
mm2/s, which is within 2.4 percent of the value measured with t
one-dimensional test and within the standard deviation of b

Fig. 6 Bottom surface temperature history for a one-
dimensional flash test showing the close agreement between
the measurements, the temperature history calculated as part
of the data reduction, and that calculated assuming the bound-
ary conditions originally used by Parker et al. †17‡ and the
value of a33 determined by the Marquardt data reduction. t1Õ2
É4 s.
Journal of Applied Mechanics
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tests. The in-plane values are found to be 0.151 and 0.153 mm2/s,
which are about 31 percent higher thana33. As was suggested by
the results of Doss and Wright@16# for PVC, this is likely the
result of extrusion processes during the manufacturing of the n
prene sheets. Indeed, Choy et al.@27# found an increased diffusiv-
ity in the draw direction and decreased diffusivity in the directio
normal to the draw of highly drawn polyethylene using a on
dimensional flash method. At the larger deformation (l51.52),
the mean value ofa33 is found to be 0.112 mm2/s, about 5.9
percent lower than the undeformed value. In contrast, the in-pl
values increase to 0.165 and 0.159 mm2/s. It should be noted that
the specimen appeared to be partially translucent to the flash
ergy at the stretched state. This leads to error in the indica
value of a33 because the boundary value problem used to de
mine a33 from the temperature history is no longer strickly valid
If such error is small, it reveals itself by the indicated value ofa33
changing as the fraction of the temperature history used in d
reduction increases. Taylor@24# showed that in such circum-
stances the value ofa33 may be found by extrapolating the indi
cated values ofa33 calculated using different fractions of the tem
perature history to the one indicated at zero fraction of t
temperature history. This method of correction was employed
the high stretch states. The values ofa11 anda22 remained inde-
pendent of the fraction of the temperature history used in d
reduction because they are strongly dependent on the temper
histories of the thermocouples that are outside the projection
the aperture opening.

Conclusions
The ability to measure the multiaxial mechanical response

elastomers, and similarly planar soft tissues, promises more c
plete data for the formulation of constitutive models for fini
strain thermomechanics. The active control of the finite deform
tion, via the real-time video feedback to the motor controlle
allows measurement of the material response to a wide variet
deformations that theory reveals would be useful. The equibiax
proportional, and constant stretch tests discussed here have
trated this capability. Reprogramming the motor control algorith
would allow constant invariant~cf. @12#! and other tests to be
easily performed, as well. Data from such multiaxial tests are
readily available in the literature.

Formulating models of general thermoelastic response requ
that the temperature field within the material also be modeled.
this end, this device incorporates an extension of the flash ther
diffusivity technique that allows measurement of the in-pla
components of diffusivity as well as the more commonly me
sured out-of-plane component. Data presented illustrate that n

Fig. 7 Temperature history of the central and one of the lateral
thermocouples for equibiaxial in-plane stretch of lÄ1.03. Solid
line is model result.
SEPTEMBER 2000, Vol. 67 Õ 469
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prene rubber at low stretches may still have anisotropic ther
diffusivity and that these values may change with stretch, e
over the moderate range of equibiaxial stretches examined. S
coupling may be more marked for other materials, particula
elastomeric composites and soft tissues.
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Appendix A

Analysis of the Temperature History. In the flash method
as originally developed, the top face of a planar specimen is
formly illuminated by an impulse~@17#!. The temperature field is
then described by a simplified Eq.~4! as

]T

]t
5a33

]2T

]x3
2 (A1)

wherex3P@0,d#, d is the current thickness, and the subscrip
indicates the out-of-plane direction. Neglecting convective los
a good assumption in the short time of most one-dimensio
measurements, the solution of Eq.~A1! for the temperature rise a
the rear surface of the specimen that has experienced such a
form impulse is~@28#!

T~d,t !5
Q

rcFd F11(
n51

`

~21!n expS 2
n2p2

d2 a33t D G (A2)

whereQ is the area-density of energy associated with a pulse
radiant energy that is assumed to be instantaneously and
formly absorbed in a thin layer at the top face of the specim
Noticing that the bottom face temperature history contains
parameterg5(p2a33t/d

2), this solution provides a simple ex
pression for determininga33 from a single point on the tempera
ture history curve defined by Eq.~A2!. Choosingt1/2 as the time at
which the temperature reaches one-half its maximum valueTmax
5Q/rcFd yields g51.38. The result is

a335
1.38d2

p2t1/2
. (A3)

An alternative analysis, that is also employed here, is to us
Marquardt algorithm~@29#! to estimatea33 by minimizing the
difference between a measured temperature history and resu
a finite difference solution of Eq.~A1!. The advantage of this
approach is that the assumed boundary conditions may be rel
to include possible convective losses and a finite light pulse.

Moreover, an analytical solution is not practical for determini
the components ofa in the three-dimensional tests. Instead, t
Marquardt algorithm is used again, now in conjunction with
finite difference solution of Eq.~4! written for the principal direc-
tions of the specimen. The in-plane edges of the specimen
assumed to be adiabatic because the temperature history nee
determine the components ofa is shorter than the time require
for a significant temperature rise at these edges. A convec
boundary is specified on the top face, except under the ape
opening, where a spatially uniform, time-varying heat flux
specified during the flash and followed by a convective bound
condition afterwards. The bottom boundary assumes conduc
into the air underneath the specimen. Conduction in the air la
underneath the specimen plays a significant role in the temp
ture history at the transverse thermocouple locations of specim
of moderate thermal diffusivity~such as the range of 0.11 to 0.1
470 Õ Vol. 67, SEPTEMBER 2000
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mm2/s measured here!. Recall that the aperture opening is 10 m
on a side and the distance between the central and transv
thermocouples in 15 mm, butd'3 mm. Furthermore, the therma
diffusivity of air at room temperature is 22.5 mm2/s as compared
with the neoprene with 0.12 mm2/s. Thus, once the air has bee
heated by the central region of the bottom face of the specime
provides an alternative path for energy transport. Since the t
perature rise of the transverse thermocouples in the th
dimensional tests run here is on the order of 0.3°C, even a s
addition of energy from the air can cause significant error in
determination of in-plane thermal diffusivity. The Rayleigh num
ber is small enough to indicate the absence of buoyancy-dr
flows in the air underneath the specimen~@30#!. This was con-
firmed by measurements of the temperature response of th
and comparison with finite difference modeling. Calculated spe
men temperature histories were unchanged for included air la
thicker than 13 mm.

The Marquardt algorithm and finite difference model estim
five parameters: the three components of thermal diffusivity~a11,
a22, anda33!, the scaled heat flux to the specimen as defined
qmax9 /rC, and a convective heat loss term defined as 2hdt/rCdx,
wheredx is the node spacing anddt the time-step. Further detail
are available in Doss and Wright@16#.

Appendix B

Strain Measurement. Assuming a homogeneous deform
tion in the central region, the in-plane components ofF can be
found via ~@18#!

F11511
]u1

]X1
F125

]u1

]X2
(B1)

F215
]u2

]X1
F22511

]u2

]X2
(B2)

where ui and Xi are the components of the displacement (5xi
2Xi) and original position vectors, respectively. The displac
ment gradients]ui /]Xi can be found via a bilinear isoparametr
interpolation of any four markers that define a quadrilateral. F
example, let

Xi5(
j 51

n

f j~z,h!Xi
j (B3)

ui5(
j 51

n

f j~z,h!ui
j (B4)

wheren (54) denotes the number of markers and

f j~z,h!5
1

4
~11zz j !~11hh j ! (B5)

is a standard bilinear interpolation. In the case of equibiaxial
tension~with no rotations!, F115l, F225l andF125F2150.
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Anti-Optimization Versus
Probability in an Applied
Mechanics Problem: Vector
Uncertainty
In this study probabilistic and nonprobabilistic anti-optimization approaches are c
trasted to evaluate their relative advantages and disadvantages while solving a mec
cal problem in presence of vector uncertainty. The different cases that are analyz
probabilistic setting that deal with either uniform or generic probability density functio
for the uncertain variables varying in a rectangular domain. This case has been c
pared with interval analysis, a particular case of anti-optimization. The presence
convex, smooth boundary of the uncertain domain has been also considered for co
ing results obtained with these two alternative methods. It is shown that in case of v
uncertainty the anti-optimization method yields the same solution for the design pro
as is provided by means of more complex probabilistic considerations.
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1 Introduction
Consider first the simplest problem involving a single rand

variable. Let the simply supported column be not straight but
bent into an initial, unloaded shape. Unlike the straight colum
the bending will occur immediately upon application of the ax
load P, regardless of its magnitude, due to its offset from t
slightly curved centerline of the bar. The total deflection of t
column at any point is the sum of its initial deviation from th
straight line and the additional deflection due to the applied l
P. If the initial displacement is represented asa0L sin(px/L)
wherea0 is the amplitude,L5length, then the total displacemen
d5aL in the middle cross section is connected to the loadP as
follows:

a5
a0

12P/Pcl
; Pcl5

p2EI

L2

where Pcl is the Euler load. Leta0 have a uniform density
1/(m22m1) in the range@m1 ,m2#. Reliability is given by the
probability that the total displacement is not greater than a pr
lected valuea, R5Prob(a<a).

Reliability becomes

R55
0, a~12P/Pcl!,m1

a~12P/Pcl!

m22m1
, m1,a~12P/Pcl!,m2

1, a~12P/Pcl!.m2 .

We want to design the column with required reliabilityr, i.e., R
>r . We find the design value ofP/Pcl from the equality

a~12P/Pcl!

m22m1
5r

leading to the design value

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
23, 1998; final revision, Feb. 29, 2000. Associate Technical Editor: W. K. L
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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m11r ~m22m1!

a
.

Whenr→1, P/Pcl tends to the value 12m2 /a. This value can be
obtainedwithout probabilistic arguments. Indeed, sincem2 is the
maximum value ofa0 , it is immediately seen that the perfor
mance will be guaranteed if

a~12P/Pcl!>m2 .

This immediately results in the minimum admissible value
P/Pcl that coincides with simple yet more elaborate probabilis
analysis. This simple idea is being generalized in this study
more realistic case of bounded variation of two variables.

In a two-dimensional case uncertain vector is identified w
two coordinates. These may vary in a rectangular region, wh
enables one to the use of the interval analysis in a vector set
If is intuitively understood that the smallest length interval sh
be chosen to characterize the one-dimensional uncertainty; fo
two-dimensional case one should seek for a rectangle of minim
area, since then the further evolution of the system will be m
closely bracketed. Yet, this may not be a best representation o
available data whose scatter must be modeled. Indeed, in s
cases, enclosing the data by regions other than rectangle
result in even a smaller area, enclosing all available data.
possibility arises, for example, of enclosing the data by the m
mum area ellipse, whose area may turn out to be smaller than
of the minimum area rectangle. Along these thoughts, in addi
to interval analysis~@1–3#! the ellipsoidal modeling was devel
oped ~@4–6#! for uncertainty analysis. Interestingly, these tw
lines of thoughts~on intervals and ellipsoids! intersected in ex-
tremely few works, and essentially have been developed in pa
lel, and mostly without knowledge about the developments
other fields.

It appears that the ellipsoidal framework has some advanta
over the interval analysis in the sense that it deals with a smo
convex boundary of the enclosed data with associated straigh
ward analytical or numerical treatment. Yet the ellipsoidal d
may suggest that the components are functionally dependent.
tacit assumption may be unjustified in some circumstances. He
the independent data may be better justified as enclosed
rectangular region. Interval and ellipsoidal modeling are particu
cases of the convex modeling~@7,8#!. In fact, convex description
of uncertainty is richer than the ellipsoidal one: In addition to t
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li-
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ellipsoids per se, it includes sets with functions with envelo
bounds, or those with bounded integral squares, or those
bounded integral squares of its derivatives and so on.

The case when the uncertain variables do not belong to a
vex set may dealt with the methods of nonlinear programm
~@9#!. All these analyses share the main ideas ofanti-optimization,
namely, of the desire to determine least favorable response
order to guarantee the successful performance despite the
ence of uncertainty.

In this paper the two-dimensional uncertain imperfections
considered in the context of the column impact problem. T
probabilistic modeling of uncertainties of various kinds in the d
namic buckling setting were dealt with by Goncharenko@10#, Bu-
diansky and Hutchinson@11#, Lindberg @12#, Ariaratnam @13#,
Kil’dibekov @14#, Amazigo and Frank@15#, Amazigo@16#, Lock-
hart and Amazigo@17#, Maymon and Libai@18#, Elishakoff @19#,
Bogdanovich@20,21# and others.

Convex modeling of the dynamic buckling problems was fac
tated by Ben-Haim and Elishakoff@22#, Elishakoff and Ben-Haim
@23#, Lindberg@24,25# and Ben-Haim@26#. These two avenues o
thoughts on the uncertainty modeling, namely, the probabili
and anti-optimization ones, have not been compared in eithe
the above studies. This will be the principal objective of t
present paper. The direct comparison of designs yielded by
alternative approaches sheds light on the possible compatibilit
incompatibility of these two alternative approaches.

2 Deterministic Analysis
The differential equation for the uniform column under ax

impact load

P~ t !5P^t&0 (1)

reads

EI
]4w

]x4 1P~ t !
]2w

]x2 1mA
]2w

]t2 52P~ t !
]2w0

]x2 (2)

with E5modulus of elasticity,I5moment of inertia,m5mass
density,A5cross-sectional area,P(t)5axial load,w0(x)5initial
imperfection, constituting a small deviation of the initial shape
the unstressed column, andw(x)5additional transverse deflectio
of the column’s axis, so that

wT~x,t !5w0~x!1w~x,t ! (3)

represents a total displacement. In Eq.~1! ^t&0 is a singularity
function, namely, a unit step function

^t&05H 0, t,0

1, t>0.
(4)

In Eq. ~2! following notation are adopted:x5axial coordinate,
t5time, P(t)5axial load, m5material density, andA5cross-
sectional area.

The attendant boundary conditions for the column that is s
ply supported at its both ends read

w~x,t !50 at x50 and x5L (5)

]2w

]x2 50 at x50 and x5L (6)

whereL is the column’s length. The initial conditions are

w~x,t !50,
]w~x,t !

]t
50 at t50. (7)

Let the initial imperfections be given as a sum of two sinusoi
terms as follows:

w0~x!5 f 1~x!1 f 2~x!5h1 sinS px

L D1h2 sinS apx

L D , (8)
Journal of Applied Mechanics
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h1 and h2 being the amplitudes off j (x), ( j 51,2), respectively.
In Eq. ~1! the integera.1 represents the wave number in th
variation of f 2(x). Following Elishakoff @19#, we will use the
nondimensional quantities

j5
x

L
, l5v1t, u5

w

D
, g5

P

Pcl
, u05

w0

D
(9)

where j5nondimensional axial coordinate,l5nondimensional
time, u0(j)5nondimensional initial displacemen
u(j,t)5nondimensional additional displacement, a
a5nondimensional axial load. In Eq.~9!

v15S p

L D 2AEI

mA
, D5A I

A
, Pcl5

p2EI

L2 (10)

where v15fundamental natural frequency of the ideal colum
i.e., of a column with neither initial imperfections nor axial loa
D5radius of inertia,Pcl5classic, and Euler’s buckling load~Fig.
1!. The nondimensional amplitudes of initial imperfections are

g15h1 /D, g25h2 /D. (11)

The additional displacement is sought as a superposition,

u~j,l!5u1~j,l!1u2~j,l!, (12)

where the functionsu1(j,l) and u2(j,l) are solutions of the
following equations, respectively:

]4uj

]j4 1p2g
]2uj

]j2 1p4
]2uj

]l2 52p2g
d2u0

~ j !

dj2 ~ j 51,2! (13)

with the initial imperfections expressed as

u0
~1!~j !5g1 sin~pj!, u0

~2!~j !5g2 sin~apj!. (14)

The functionsuj (j,l) are represented in the separable forms
the initial imperfections in Eq.~14!, namely,

u1~j,l!5e1~l!sin~pj!, u2~j,l!5e2~l!sin~apj! (15)

wheree1(l) ande2(l) are time-dependent functions. Substitutio
of Eqs.~14!–~15! in Eq. ~13! yields ordinary differential equations
with respect to functionse1(l) ande2(l):

d2e1~l!

dl2 1~12g!e1~l!5gg1 (16)

d2e2~l!

dl2 1a2~a22g!e2~l!5ga2g2 . (17)

Satisfying the initial conditionsej (0)50 and ėj (0)50 ( j 51,2)
yields

e1~l!55
gg1

g21
~cosh~rl!21!, g.1

g1l2/2, g51

gg1

12g
~12cos~rl!!, g,1

(18)

where

r 5Aug21u. (19)

For e2(l) we have

e2~l!55
gg2

g2a2 ~cosh~aql!21!, g.a2

1

2
ga2g2l2, g5a2

gg2

a22g
~12cos~aql!!, g,a2

(20)
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q5Aug2a2u. (21)

The nondimensional modal displacementszi(j,l), (i 51,2) are
introduced:

z1~j,l!5u0
~1!~j !1u1~j,l!5@g11e1~l!#sin~pj!

(22)
z2~j,l!5u0

~2!~j !1u2~j,l!5@g21e2~l!#sin~apj!.

With the aid of Eqs.~15!–~16! we form a total displacemen
wT(x,t) or its nondimensional counterpartz(j,l)

z~j,l!5wT~x,t !/D5z1~j,l!1z2~j,l! (23)

with, defining wT
( j )(x,t) the nondimensional displaceme

wT
( j )(x,t)5w0

( j )(x)1wj (x,t) j 51,2 we have

z1~j,l!5wT
1~x,t !/D5v1~l!sin~pj!

(24)
z2~j,l!5wT

2~x,t !/D5v2~l!sin~apj!.

The functionsv j (l), ( j 51,2) of the nondimensional timel
alone, read

v1~l!5
gg1

g21 H cosh~rl!2
1

gJ 5g1a1
~1!~l!, g.1 (25a)

v1~l!5g1~l212!/25g1a1
~2!~l!, g51 (25b)

v1~l!5
gg1

12g H 1

g
2cos~rl!J 5g1a1

~3!~l!, g,1 (25c)

v2~l!5
gg2

g2a2 H cosh~aql!2
a2

g J 5g2a2
~1!~l!, g.a2

(25d)

v2~l!5g2~ga2l212!/25g2a2
~2!~l!, g5a2 (25e)

v2~l!5
gg2

a22g H a2

g
2cos~aql!J 5g2a2

~3!~l!, g,a2.

(25f)

Since there exist different analytical expressions forv j (l) de-
pending on the value ofg, the total displacement possesses va
ous analytical representations. In particular, five different ca
occur as follows:

z~j,l!5a1
~3!~l!g1 sin~pj!1a2

~3!~l!g2 sin~apj!, g,1
(26a)

z~j,l!5a1
~2!~l!g1 sin~pj!1a2

~3!~l!g2 sin~apj!, g51
(26b)

z~j,l!5a1
~1!~l!g1 sin~pj!1a2

~3!~l!g2 sin~apj!, 1,g,a2

(26c)

z~j,l!5a1
~1!~l!g1 sin~pj!1a2

~2!~l!g2 sin~apj!, g5a2

(26d)

z~j,l!5a1
~1!~l!g1 sin~pj!1a2

~1!~l!g2 sin~apj!, g.a2.
(26e)

Note that although there are five different cases, each of
parametersa1 or a2 have three separate expressions. If the ini
imperfection amplitudesg1 andg2 are given deterministically, the
design is performed in the manner of the total displacement no
exceed the threshold valuec. Hereinafter the cross section of th
column is assumed to be of the circular shape.

The main thrust of this study is an investigation of the effect
uncertainty in initial imperfections on the resulting design valu
of the cross-sectional radius. Ifg1 and g2 constitute uncertain
variables, the outputz(j,l) will likewise represent the uncertai
function. Properties of the functionz(j,l) depend on the infor-
mation provided about the uncertain variablesgj . We will inves-
474 Õ Vol. 67, SEPTEMBER 2000
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tigate several alternative avenues of describing this vector un
tainty, either probabilistically or without recourse to th
stochasticity concept.

3 Probabilistic Analysis
Let the amplitudes of the initial imperfectionsg1 and g2 con-

stitute a random vector with specified joint probability dens
function f G1G2

(g1 ,g2). Capital letters denote the random var
ables whereas the lower case notation is reserved for the s
possible values that are taken by the random variables. We
interested in finding the reliability of the system, namely, t
probability that the total displacement will remain in a safe regio
in accordance with the Hoff’s criterion.

The reliability is defined as the probability that maxj Z(j,l)
remains in a safe region. For simplicity we fixa55. Hence

Y[max
j

Z~j,l!5maxZ~1/2,l!5V1~l!1V2~l!. (27)

FunctionsV1(l) andV2(l) are multiplicative random processe
depending upon the nondimensional parameterl

V1~l!5G1a1
~ i !~l!, ~ i 51,2,3! (28)

V2~l!5G2a2
~ j !~l!, ~ j 51,2,3!. (29)

Now,

R~l!5Prob~2d<Y5V1~l!1V2~l!<c!. (30)

In view of Eq. ~27!, the reliability in Eq.~30! becomes

R~l!5Prob~Y<c!2Prob~Y<2d!. (31)

Equation~31! can be rewritten as follows:

R~l!5FY,l~c;l!2FY,l~2d;l! (32)

where FY,l is the probability distribution functions of random
processY, and

Y~l!5G1a1
~ i !~l!1G2a2

~ j !~l!, (33)

indicating that it represents a linear combination of two rand
variables with deterministic real-valued positive functions of no
dimensional timel as coefficients. The evaluation of the reliab
ity, as stated in Eq.~31!, needs the particularization of the join
probability density function of the random variablesG1 andG2 .
We will consider the cases in whichG1 andG2 are either statis-
tically independent or dependent.

4 Initial Imperfections With Uniform Probability
Density Over a Rectangular Domain

Let the initial imperfections be independent random variab
with a uniform probability density function in a rectangular d
main ~Figs. 1 and 2!:

f G1G2
~g1 ,g2!5

1

a22a1

1

b22b1
$^g12a1&

02^g12a2&
0%

3$^g22b1&
02^g22b2&

0% (34)

where thê •&0 indicates the singularity function. The variations
G1 and G2 are confined to the intervals,G1P@a1 ,a2# and G2
P@b1 ,b2#, respectively~Fig. 2!. Moreover, we assume, for th
sake of simplicity, thata j.0, b j.0 ( j 51,2). Marginal probabil-
ity densities read

f G1
~g1!5

1

a22a1
$^g12a1&

02^g12a2&
0%

(35)

f G2
~g2!5

1

b22b1
$^g22b1&

02^g22b2&
0%.

with
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f G1G2
~g1 ,g2!5 f G1

~g1! f G2
~g2!. (36)

In order to perform the reliability analysis of the column it
necessary to find the probability distribution functionFY,l(y,l)
of the random variableY(l) in Eq. ~31!. With the second term in
this latter equation vanishing identically we obtain

FY,l~z,l!5E
2`

` E
2`

~z2a2
~ j !

~l!g2!/a1~l!
f G1G2

~ t1 ,t2!dt1dt2 .

(37)

By substituting Eq.~35! in Eq. ~37! and performing integration
the reliability function is obtained as

R~l!5
1

a22a1

1

b22b1
F 1

a2
~ j !a1

~ j ! ^c2a1
~ j !a12a2

~ j !b1&
2G

2
1

a22a1

1

b22b1
F 1

a2
~ j !a1

~ j ! ^c2a1
~ j !a12a2

~ j !b2&
2G

2
1

a22a1

1

b22b1
F 1

a2
~ j !a1

~ j ! ^c2a1
~ j !a22a2

~ j !b1&
2G

1
1

a22a1

1

b22b1
F2

1

a2
~ j !a1

~ j ! ^c2a1
~ j !a22a2

~ j !b2&
2G
(38)

where

^x&25H x2/2, x>0

0, x,0.
(39)

Equation~38! suggests several useful conclusions regarding
characterization of the reliability. At the initial time instancet
50 ~or l50!, we havea1

( j )(0)5a2
( j )(0)51 for j 51,2,3. We con-

clude that if the failure boundaryc is set at thea11b1 or lower,
then the reliability vanishes. This implies that if the failure boun
ary satisfies the inequality

c<a11b1 , (40)

no possibility of design associated with nonvanishing reliabi
exists for the column subjected to nonzero values of the app
load P. Figs. 3–6 portray some interesting aspects which may
deduced by investigation of the various terms in Eq.~38!. We first
observe that each one of the four terms represents the area o
region created by the straight line

c5a1
~ j !g11a2

~ j !g2 (41)

and an appropriate boundary of the rectangular domain of
initial imperfection amplitudesg1 andg2 . Let us consider various
straight lines passing through either of the four corners of
boundary, and parallel to the line given in Eq.~41!. The plane
(g1 ,g2) is subdivided into five regions denotedG j ,
( j 51, . . . ,5) ~Fig. 3!. The broken line in Fig. 3 represents th
line in Eq.~41!. Four solid lines are parallel to it, and pass throu
chanics
s

the
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ity
lied
be

f the

the

the

e
h

either cornerA, B, C, or D. In case the line in Eq.~41! belongs to
region G2 ~Fig. 3!, the coordinates of the intersection pointsA*
andB* with the edgesAD andAB, respectively, are given by

A* [S c2a2
~ j !b1

a1
~ j ! ,b1D ; B* [S a1 ,

c2a1
~ j !a1

a2
~ j ! D . (42)

The distancesAA* andAB* are

AA* 5~c2a2
~ j !b1!/a1

~ j !2a1 ; AB* 5~c2a1
~ j !a1!/a2

~ j !2b1 .

(43)

Fig. 2 Uniform probability density function over a rectangular
domain

Fig. 3 Geometrical representation of the first term in reliability
expression „Eq. „44……
SEPTEMBER 2000, Vol. 67 Õ 475
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The areaSAB* A* under the triangleAB* A* is denoted as a
hatched region~Fig. 3!. It equals

SAB* A* 5~AB* !~AA* !/25~c2a1
~ j !a12a2

~ j !b1!2/2a1
~ j !a2

~ j ! .
(44)

The reliability of the system is determined by multiplying the ar
in Eq. ~44! by the constant value of the probability density fun
tion (a22a1)21(b22b1)21. In this case only the first term in

Fig. 4 Geometrical representation of the second term in reli-
ability expression, „Eq. „47……

Fig. 5 Geometrical representation of the third term in reliabil-
ity expression „Eq. „50……

Fig. 6 Geometrical representation of the fourth term in reliabil-
ity expression „Eq. „52……
476 Õ Vol. 67, SEPTEMBER 2000
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the bracketed expression in Eq.~38! is nonvanishing. By inspec-
tion of Eq. ~38! the coincidence between this latter term and t
areaSAB* A* is recognized.

Figure 4 deals with the case in which the straight line in E
~41! belongs to the regionG3 . The shaded areaABC* A* , multi-
plied by the above constant value of the probability density fu
tion, represents the reliability of the system. This area is obtai
as a difference between the area of the triangleAB* A* and the
area of the triangleBB* C* . The coordinates of the intersectio
point C* are

C* [S c2a2
~ j !b2

a1
~ j ! ,b2D (45)

whereas the expression of the coordinates ofB* coincides with
Eq. ~42!. The side lengths for the triangleAB* A* are then given
by Eq. ~43! and the ones of the triangleBB* C* read

BB* 5~c2a1
~ j !a1!/a2

~ j !2b2 ; BC* 5~c2a2
~ j !b2!/a1

~ j !2a2 .
(46)

The areaSBB* C* equals

SBEC* 5~BB* !~BC* !/25~c2a1
~ j !a12a2

~ j !b2!2/2a1
~ j !a2

~ j !

(47)

and is recognized as the second term in Eq.~38!. Note that the
area of the triangleAB* A* coincides with the first term of the
same equation.

Analogously, the geometrical meanings of the third and
fourth terms involved in Eq.~38! may be deduced by examinin
Fig. 5 and Fig. 6, respectively. In fact, Fig. 5 deals with the ca
that the broken line belongs to regionG4 . In this case the reliabil-
ity is given by the areaABC* D* D and it is obtained as the
algebraic sum:

SBC* D* DA5SAB* A* 2SBEC* 2SDD* A* . (48)

The first two terms of this expression have been already id
tified. In order to obtain the last area in Eq.~48! we determine the
coordinates of pointD* ,

D* [S a2 ,
c2a1

~ j !a2

a2
~ j ! D . (49)

Note that the coordinates of the pointA* are given in Eq.~42!.
The area of the triangleDD* A* is so obtained as

SDD* A* 5~DD* !~DA* !/25~c2a1
~ i !a22a2

~ j !b1!2/2a1
~ j !a2

~ j ! .
(50)

It coincides with the third term in Eq.~38!. To determine the
geometric interpretation of the fourth term in Eq.~38! let us con-
sider the case when the broken line belongs to the regionG5 ~Fig.
6!. The reliability is given as the product of the area of the re
angleABCD and the density (a22a1)21(b22b1)21. The area
itself equals (a22a1)(b22b1). Hence the reliability is unity as
expected. On the other hand, in order to identify the fourth term
Eq. ~29! we represent the areaABCD as the following algebraic
sum:

SABCD5SAB* A* 2SBB* C* 2SDD* A* 1SCC* D* . (51)

The first three terms in Eq.~51! are given by their respective
counterparts in Eq.~29!. The fourth term in Eq.~51! may be easily
obtained by inspection of Eq.~45! and Eq.~49!. The area of the
triangleCC* D* reads

SCC* D* 5~CC* !~CD* !/25~c2a1
~ j !a22a2

~ j !b2!/2a1
~ j !a2

~ j ! .
(52)

It represents the fourth term in Eq.~38!. As is seen each term in
the reliability expression has an appropriate geometrical mean
Naturally, if the broken line lies in the regionG1 then one imme-
Transactions of the ASME
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diately deduces that the reliability vanishes. Likewise, if the b
ken line passes through the regionG5 , the corresponding reliabil-
ity is unity.

The results of sample calculations are portrayed in Figs. 7–
The cases correspond to the five independent expressions fo
coefficientsa1

( j ) anda2
( j ) , ( j 51,3) in Eq.~25!. It is seen from Eq.

~26! that these cases correspond, respectively, tog,1, g51, 1,g

Fig. 7 Reliability versus nondimensional time, initial imperfec-
tions with uniform probability density „DÄ†1.2,2‡Ã†1.4,2‡…,
Eqs. „26a… and „38…

Fig. 8 Reliability versus nondimensional time, initial imperfec-
tions with uniform probability density function „DÄ†1.2,2‡
Ã†1.4,2‡…, Eqs. „26b… and „38…

Fig. 9 Reliability versus nondimensional time, initial imperfec-
tions with uniform probability density „DÄ†1.2,2‡Ã†1.4,2‡…,
Eqs. „26c… and „38…
Journal of Applied Mechanics
o-

11.
r the

,25, g525, g.25. For a specified value of the failure bounda
c and the different values of the ratioP/Pcl , the reliability func-
tions are depicted as functions of a nondimensional timel. For
caseg,1 ~Fig. 7! buckling occurrence is not a certain event: Th
structure may or may not buckle depending upon the syste
parameters. Remarkably, the reliability does not necessarily t
to zero with the increase of timel. Instead, it gains a minimum
value given by

R~l!5R~p/r ! for l>p/r , (53)

depending on the valuec that delimits stable and unstable state
When the nondimensional time reaches the valuep/r the dis-
placement of the middle cross section of the system will achie
its maximum value, corresponding to the least possible reliabil
In these circumstances, the valueR(p/r ) represents the guaran
teed minimum reliability that the column may possess.

The main objective of this study is to design the system, i.e.
obtain the radius of the circular cross sectionrd of the column
such as to maintain a prescribed reliabilityr c up to a preselected
time instantt̄, for a specified value of the failure boundaryc.

It is advantageous, however, to view the failure boundaryc as a
function of the remaining parametersc(rd ,t,E,L,m), yielding for
various combinations of its arguments, the failure boundary c
responding to satisfactory performance with the specified relia
ity r c . Thus, specifying the mechanical and the geometrical ch
acteristics of the column and the external load allows one

Fig. 10 Reliability versus nondimensional time, initial imper-
fections with uniform probability density „DÄ†1.2,2‡
Ã†1.4,2‡…, Eqs. „26d… and „38…

Fig. 11 Reliability versus nondimensional time, initial imper-
fections with uniform probability density „DÄ†1.2,2‡
Ã†1.4,2‡…, Eqs. „26e… and „38…
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obtain design curvesc5c(rd , t̄) shown in Figs. 12–14. The value
of the cross-sectional radiusrd necessary for a successful perfo
mance is obtained by means of these curves, specifying the v
of the failure boundaryc. Note that the ratio between the extern
load P and the classic Euler’s loadPcl , defined asg depends
upon the cross-sectional radiusr,

g5
P

Pcl
5

PL2

p2EI
5

M

r4 , M5
4PL2

p3E
. (54)

It is immediately observed, in view of Eq.~29!, that when

lim
r→rd

a1
~ i !~r, t̄ !a21a2

~ j !~r, t̄ !b25c (55)

the reliability tends to unity from below.
Figure 12 depicts the failure boundaryc versus the radiusrd for

the prescribed timet̄50.5 seconds, and unity reliability. As ma
be observed the dependencec5c(rd) has an asymptote atc54,
whena252 andb252, this numerical result can be derived from
analytical considerations. In fact, whenrd tends to infinity

lim
rd→`

aj
~3!~rd , t̄ !51, for ~ j 51,2!, (56)

Fig. 12 Design curve cÄc „rd…, t̄Ä0.2 uniform probability den-
sity function and unity reliability requirement „PÄ3000 Kg, D
Ä†1.2,2‡Ã†1.4,2‡…, Eq. „38…
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and Eq.~55! takes the following form:

c5a21b2 . (57)

Since in Fig. 12a21b254, the asymptote whenrd→` is repre-
sented byc54. This result is straightforward: An infinite value o
the cross section’s radiusrd yields an infinite frequency of vibra-
tion of the column. In these circumstances the system will rem
in the same position, represented by its initial imperfection alo

Figure 13 portrays a design surfacec5c(c, t̄) allowing one to
obtain for a specified timet̄ and failure boundaryc, the required
radiusrd of the cross-sectional area, so that the reliability isr c . In
Fig. 13r c is taken to be unity. Figure 14 depicts design curves
various codified reliabilitiesr c50.8,r c50.9, andr c51.0. Figures
show that smaller values of design cross-sectional radius
needed when less stringent required reliabilities are imposed f
specified failure boundary, as it should be.

Let us examine the dependencec5c(rd) in Figs. 12 and 14.
Each figure is composed by three different subregions. Value
the cross section’s radiusrd<rdc

(2)5A4 M /a2 ~Region I! lead to
a load ratio g>a2. Therefore, the functionsa1

( j )(rd ,t)
and a2

( j )(rd ,t) in the expression of the failure boundaryc are
represented by Eq.~25a! and Eq.~25b!. In this case the displace
ment function maxj Z(rd ,t) is a monotonically increasing function
with time t. Large failure boundaryc, combined with small values
of the time intervalt where the successful probabilistic perfo
mance is required are necessary for high prescribed reliabil
r c .

In caserdc
(2),rd<rdc

(1)5AM the load ratiog belongs to the
open interval@1,a2). The expression of the failure boundaryc
contains two functions: A trigonometric function fora2

(3)(rd ,t)
and an expression,a1

(1)(rd ,t), that is monotonically increasing. In
this case too, large values of the failure boundaryc along with
small performance times would guarantee the high reliability
quirement. To get more insights at the dependence upon the
t̄ we express the argument of the cosine function in Eq.~25f!, in
view of Eq. ~54!,

«15
Aa2rd

42M

rd
S p

L D 2AE

m
t̄, (58)

allowing one to get a better look at the influence of the preselec
time t̄. In fact, the functiona2

(3)(rd , t̄) in Eq. ~25f! attains its
maximum for values ofrd and t̄ making Eq.~58! to equalp,
reliability reaches its minimum level. For values of paramet
Fig. 13 Design surface cÄc „rd ,t … uniform probability density function and unity reliability
requirement „PÄ3000 Kg, DÄ†1.2,2‡Ã†1.4,2‡…, Eq. „38…
Transactions of the ASME
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leading to expression in Eq.~58! to be larger thanp the previ-
ously achieved minimum reliability is valid. Values ofrd>rdc

(1)

5A4 M lead to a load ratiog,1; hence the expression of the failur
boundaryc(rd ,t) involves Eq.~25a! for a1

( j )(rd , t̄). Interestingly,
if the argument of the trigonometric function in the expression
a1

(3)(rd ,t), bearing in mind Eq.~54!

«25
Ard

42M

rd
S p

L D 2AE

m
t̄ (59)

is larger thanp, for a specified timet̄ and rd the reliability
achieved for«25p is retained. Hence the cosine function in th
expression ofa1

(3)(rd ,t) must be replaced by21.
The functiona1

(3)(rd , t̄) becomes in this case

a1
~3!~rd , t̄ !52

11rd
4/M

12rd
4/M

. (60)

As may be observed~Fig. 14!, different values of the required
reliability r c lead to appropriate asymptotic values. In fact, let
design the system for high reliability requirement~Region G4 ,
Fig. 5!. The expression of the failure boundary as a function
reliability, with the aid of Eq.~28! is given by

c5a2a1
~ j !1b2a2

~ j !2A2a1
~ j !a2

~ j !~12r c!~a22a1!~b22b1!.
(61)

Evaluation of the limit value of Eq.~53! for infinite value of the
cross section’s radiusrd results in

lim
rd→`

c5a21b22A2~12r c!~a22a1!~b22b1!. (62)

Equation~62! allows obtaining the asymptotic value of the failur
boundary functionc(rd , t̄) by specifying the reliability value.

The results of this section clearly demonstrate that for h
values of required reliability the design radiird of the cross-
sectional area are extremely close.

The following question begs to be asked: Do the design val
of the cross section radiusrd depend upon the particular form o
the probability density functionf G1G2

(g1 ,g2)? One can antici-
pate, generally speaking, that the designs depend on the pro
listic inputs. Yet, as it will be elucidated, the design in extreme
high reliability regions is practically independent upon the inp
probabilistic information.

Fig. 14 Comparison of design curve; uniform probability den-
sity function and different codified reliabilities, t̄Ä0.5 „P
Ä3000 Kg, DÄ†1.2,2‡Ã†1.4,2‡…, Eq. „38…
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5 Initial Imperfections With General Distribution in a
Rectangular Domain

Let the initial imperfections possess a general probability d
sity function in a rectangular domain,

f G1G2
~g1 ,g2!5A fG1G2

* ~g1 ,g2!$^g12a1&
02^g12a2&

0%

3$^g22b1&
02^g22b2&

0% (63)

located in the first quadrant of the plane (g1 ,g2). A represents a
normalization coefficient depending upon the specific express
of the probability density functionf G1G2

* (g1 ,g2) that extends over
the entire plane.

The reliability expression, withz5c substituted into Eqs.~37!
and taking into account Eq.~63! reads

R~l!5E
2`

`

dt2E
2`

~c2a2
~ j !t2!/a1

~ i !

A fG1G2
* ~ t1 ,t2!@^t12a1&

0

2^t12a2&
0#@^t22b1&

02^t22b2&
0#dt1

5E
2`

`

@^t22b1&
02^t22b2&

0#dt2

3E
2`

~c2a2
~ j !t2!/a1

~ i !

A fG1G2
* ~ t1 ,t2!@^t12a1&

02^t1

2a2&
0#dt1 . (64)

Denoting the inner integral in Eq.~64! I (t2) Eq. ~64! can be
rewritten as

R~l!5E
2`

1`

I ~ t2!@^t22b1&
02^t22b2&

0#dt2

5E
b1

b2

I ~ t2!dt2

5E
b1

b2

dt2E
2`

~c2a1
~ i !t2!/a2

~ j !

A fG1G2
* ~ t1 ,t2!

3@^t12a1&
02^t12a2&

0#dt1 . (65)

In a high reliability rangec lies in the regionG4 ~Fig. 5!, in the
vicinity of a critical valuec* where

c* 5a1
~ i !a21a2

~ j !b2 with ~ i , j 51,2,3!. (66)

The highest reliability requirement will be obtained when the li
in Eq. ~41! tends to pass through the pointB. This corresponds to
valuec5c* substituted in Eq.~41!. Thus we calculate the limit

lim
c→c*

R~l!5 lim
c→c*

E
b1

b2

dt2E
2`

~c2a2
~ j !t2!/a1

~ i !

A fG1G2
* ~ t1 ,t2!

3@^t12a1&
02^t12a2&

0#dt1

5E
b1

b2

dt2E
2`

a21~a2
~ j !/a1

~ j !!~b22t2!
A fG1G2

* ~ t1 ,t2!

3@^t12a1&
02^t12a2&

0#dt1

5E
b1

b2

dt2E
2`

a2

A fG1G2
* ~ t1 ,t2!

3@^t12a1&
02^t12a2&

0#dt1

1E
b1

b2

dt2E
a2

a21~a2
~ j !/a1

~ j !!~b22t2!
A fG1G2

* ~ t1 ,t2!

3@^t12a1&
02^t12a2&

0#dt1 . (67)
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The inner integral vanishes because integration is carried ou
the interval@a2 ,a21a2

( j )/(b22t2)a1
( i )#. However, sinceb1<t2

<b2 , the upper limit of integration is greater thana2 . But in the
interval beyond a2 the integrand in the square parenthes
vanishes.

Reliability is then given only by the first term in Eq.~67!
yielding

lim
c→c*

R~l!5E
b2

b2

dt2E
a1

a2

A fG1G2
* ~ t1 ,t2!dt151 (68)

representing the integral of the probability density function in
entire domain. In this case of unitary reliability the design value
the cross section’s radiusrd is found from Eq.~66!.

6 Initial Imperfection With Uniform Probability Den-
sity Function: Circular Domain

This section deals with a different shape of the variable doma
The magnitudes of the initial imperfectionsG1 ,G2 are modeled as
random variables belonging to a circular domain on the pla
(g1 ,g2). The joint probability density function is assumed un
form as

f G1G2
~g1 ,g2!5H 1

pK2 , for ~g12g10!
21~g22g20!

2<K2

0, elsewhere
(69)

with g10 the abscissa of the center of the circle,g20 the ordinate,
andK the radius. As may be seen in Fig. 15 we assume, with
loss of generality, the circle to be placed in the first quadrant
the plane (g1 ,g2), for (i , j 51,2,3) the straight line

y5a1
~ i !~ l̄!g11a2

~ j !~ l̄!g2 (70)

is also drawn in a generic position depending on the values of
function a1

( i )(l̄) anda2
( j )(l̄).

According to Eq.~32!, in order to find the reliability, it is nec-
essary to integrate the probability density function below t
straight line in Eq.~69!, or over the hatched area in Fig. 15,

Fig. 15 Domain of integration of the probability density func-
tion „g 10Ä2, g 20Ä1.5, KÄ1.0…, Eq. „73…
480 Õ Vol. 67, SEPTEMBER 2000
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R~l!5E E
D

f G1G2
~ t1 ,t2!dt1dt2

5E
2`

` E
2`

~c2a2
~ j !t2!/a1

~ i ! 1

pK2 dt1dt2 . (71)

Double integral in the latter equation will be calculated with t
aid of a polar coordinate system whose origin is on the circl
center:

g15g101d cos~w!
(72)

g25g201d sin~w!

with d polar distance andw polar angle. In this coordinate system
reliability becomes

R~l!512E E
Dc

1

pK2 rdrdw (73)

whereDc is the nonhatched area in Fig. 15. Equation~70! yields

R~l!512
1

2p
@Dw2sin~Dw!# (74)

with Dw5w22w1 the angular difference of the phase anglesw1
andw2 between the polar axisd and the polar directionsG0A1 and
G0A2 , respectively. Polar phase anglesw1 and w2 may be ob-
tained by solving the following system:

a1
~ i ! cos~w!1a2

~ j ! sin~w!5
1

d
~c2a1

~ i !g102a2
~ j !g20! (75a)

d2@sin2~w!1cos2~w!#5K2 (75b)

where the first equation represents a straight line in the p
coordinate system, the latter one is instead the equation of a ci

System in Eqs.~75a!,~75b! has the solution

w15cos21S f a1
~ i !1a2

~ j !A@a2
~ j !#21@a1

~ i !#22 f 2

@a1
~ i !#21@a2

~ j !#2 D (76a)

w25cos21S f a1
~ j !2a2

~ j !A@a2
~ j !#21@a1

~ i !#22 f 2

@a1
~ i !#21@a2

~ j !#2 D (76b)

with

f 5
1

K
~c2a1

~ i !g102a2
~ j !g20!. (77)

In case ofR(l), tending to unity from below, we get from Eq
~74!

Dw→0 or w1→w2 . (78)

Hence the square root terms under the radical in Eqs.~76a!,~76b!
tend to

a2
~ j !2

1a1
~ i !2

2 f 2→01. (79)

Thus

f→A@a1
~ i !#21@a2

~ j !#22. (80)

The geometrical meaning of the condition stated in Eq.~80! can
be shown expressing the system in Eqs.~74a!,~74b! back in Car-
tesian coordinates. Thus, bearing in mind Eq.~80! and Eq.~72!,
we write Eq.~74! in the form

g25
a1

~ i !g101a2
~ j !g202a1

~ i !g11KA@a1
~ i !#21@a2

~ j !#2

a1
~ i ! (81a)

~g12g10!
21~g22g20!

25K2. (81b)
Transactions of the ASME
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Fig. 16 Reliability versus phase angle difference, Eq. „74…

Fig. 17 Comparison of design curves for uniform probability
density function over a circular domain and different required
reliabilities t̄Ä0.5, PÄ3000 Kg „g 10Ä2, g 20Ä1.5, KÄ1.0…, Eq.
„86…
Journal of Applied Mechanics
Substituting Eq.~81a! into Eq. ~81b! we get a second degre
algebraic equation for the unknowng1 ,

q0g1
222gq11q250, (82)

with coefficients

q05S 11Fa1
~ i !

a2
~ j !G2D

q151S g101
2@a1

~ i !#2g10

@a2
~ j !#2 1

2a1
~ i !KA@a1

~ i !#21@a2
~ j !#2

@a2
~ j !#2 D (83)

q35g10
2 1Fa1

~ i !

a2
~ j !G2

g10
2 1Fa1

~ i !

a2
~ j !G2

K21
2a1

~ i !A@a1
~ i !#21@a2

~ j !#2g10K

@a2
~ j !#2

whose discriminantq1
224q0q1 is identically zero. Two coinciding

solutions of this latter Eq.~82! read

g1
~1!5g1

~2!5g101
a1

~ i !K

A@a1
~ i !#21@a2

~ j !#2
(84)

this implies that the straight line in Eq.~81a! and the circle in Eq.
~81b! share one common point. Thus we conclude that the stra
line in Eq. ~81! is a tangent to the circular domain of the initia
imperfections. Equation~80! can then be interpreted as the cond
tion that the straight line in Eq.~75a! is tangent to the circle in Eq
~75b! ~Fig. 15!.

In order to design the system with a prescribed required r
ability r c we must solve Eq.~74! for the angular phase differenc
Dw, with r c substituted forR. Figure 16 depicts the curveR
5R(Dw), allowing one to obtain the phase differenceDw given the
value of the design reliabilityr c . For example, forr c50.9, Dw
51.628.

Having foundDw that corresponds tor c , we proceed to design
the system. In order to obtain the design curvesc5c(rd) for
specified time and preselected reliabilityr c , one subtracts Eq
~76a! from Eq. ~76b!, leading to
Fig. 18 Design surface cÄc „rd ,t …, uniform probability density function over cir-
cular domain and required unity reliability „PÄ3000 Kg, g 10Ä2, g 20Ä1.5, KÄ1.0…,
Eq. „86…
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Dw5w22w1

5cos21S f a1
~ i !2a2

~ j !A@a2
~ j !#21@a1

~ i !#22 f 2

@a2
~ j !#21@a1

~ i !#2 D
2cos21S f a1

~ i !1a2
~ j !A@a2

~ j !#21@a1
~ i !#22 f 2

@a2
~ j !#21@a1

~ i !#2 D . (85)

OnceDw is determined from Fig. 16 one can conclude the va
of f from Eq. ~85!. The solution of Eq.~85! for f, in conjunction
with Eq. ~77! allows one to obtain the required expression for t
design curvec5c(rd) which reads

c~rd!5a1
~ i !~rd!g101a2

~ j !~rd!g20

1
K

A2
A~@a1

~ i !~rd!#21@a2
~ j !~rd!#2!@11cos~Dw!#

(86)

and is portrayed in Fig. 17 for specified timet̄50.5 and different
values ofr c . Figure 18 represents the design surface for un
reliability as a functionc5c(rd ,t) allowing one to find the cross
sectional radiusrd for specified exploitation timet and the failure
boundaryc.

7 Initial Imperfections as Interval Variables: Interval
Analysis

Let the initial imperfection amplitude be represented by a v
tor interval variable:

g15@a1 ,a2#
(87)

g25@b1 ,b2#

so that the displacement function of the middle cross section
the column is an interval variable as well,

z5@z1 ,z2#5@a1 ,a2#a1
~ i !~l!1@b1 ,b2#a2

~ j !~l! ~ i , j 51,2,3!,

(88)
with z1 being the lower bound andz2 the upper one. Sinceg1 and
g2 are positive, so are the additional displacements. Hence in
safety requirement condition2d<z<c only the conditionz<c is
operative. System’s design via the anti-optimization techniq
identifies the worst possible reachable condition for the upperm
bound z2 of the interval variablez. If z2<c, the system will
remain in the safe domain, otherwise it will fail. Expressing t
argument of the functionsa1

( j )(l) and a2
( j )(l) in terms of the

cross-sectional radiusrd and the preselected timet̄ by means of
Eq. ~41! we obtain the formal design relation

z25a2a1
~ j !~rd , t̄ !1b2a2

~ j !~rd , t̄ !5c ~ j 51,2,3!. (89)

Comparing Eq.~89! and Eq.~55! we conclude that the forme
matches the design condition in case of unity reliability requi
ment given in Eq.~55!. If the uncertainty region coincides with
the domain represented in Fig. 2, then the design surfacec(rd ,t)
represented by Eq.~89! coincides with Fig. 14. Thus, the ant
optimization method and the probabilistic one with highest re
ability requirement leads to the same design values for the cr
sectional radiusrd .

8 Initial Imperfections as Convex Variables: Circular
Domain

Let us consider the case when the information about the un
tain imperfection magnitude is given as

~g12g10!
21~g22g20!

2<K2 (90)

whereg10 is the abscissa andg20 is the ordinate of the center o
the circle andK its radius ~Fig. 19!. The displacement of the
middle cross section reads
482 Õ Vol. 67, SEPTEMBER 2000
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z5g1a1
~ j !~l!1g2a2

~ j !~l!, ~ j 51,2,3! (91)

whereg1 ,g2 are uncertain variables belonging to the set stated
Eq. ~90!. The set~90! in this expression is convex, hence th
appropriate analysis was referred to asconvex modelingby Ben-
Haim and Elishakoff@7#.

The Hamiltonian function for this problem is given as

H5a1
~ j !g11a2

~ j !g21h@~g12g10!
21~g22g20!

22K2# (92)

andh is the Lagrange multiplier associated with the condition
Eq. ~82!. Necessary conditions for extrema read

]H

]g1
5a1

~ j !12h~g12g10!50 (93a)

]H

]g2
5a2

~ j !12h~g22g20!50 (93b)

]H

]h
5~g12g10!

21~g22g20!
22K250. (93c)

The solutions of Eqs.~93a!, ~93b!, and ~93c!, denoted byḡ1
and ḡ2 corresponding to minimumz, read

ḡ15g101
Ka1

~ i !

Aa1
~ i !2

1a2
~ j !2

(94)

ḡ25g201
Ka2

~ j !

Aa1
~ i !2

1a2
~ j !2

. (95)

It is remarkable that Eq.~94! coincides with Eq.~84! which
represents the abscissa of the touching points between the cir
domain of the random variables in Eq.~69! and the straight line in
Eq. ~70!. Let us investigate the geometrical meaning given by
Eqs.~93a!, ~93b!, and~93c! and the results in Eqs.~94! and~95!.
Eliminating parameterh from Eq. ~93a! and Eq.~93b! leads to

g25
a2

~ j !

a1
~ i ! g11

1

a1
~ i ! ~a1

~ i !g202a2
~ j !g10!. (96)

This expression represents a straight line with slopea2
( j )/a1

( i ) pass-
ing through the center of the circle. This line is identified as
Fig. 19 with labels. Equation~96! must be solved in conjunction
with Eq. ~93c!. Thus the solution of the anti-optimization proble
is found as the intersection point of the straight lines and the

Fig. 19 Initial imperfections amplitudes modeled by convex
variables: anti-optimization design „g 10Ä2, g 20Ä1.5, KÄ1.0…,
Eq. „100…
Transactions of the ASME
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circle represented by Eq.~93c!. There are two intersection point
~Fig. 19! denotedA and B corresponding, respectively, to max
mum and minimum of the displacement function. In order to d
with the anti-optimization technique, one must look for the ma
mum of the displacement function, namely the pointA in Fig. 19;
Eqs.~94! and ~95! refer to pointA.

The design problem can be stated differently. Let us cons
the expression

g252
a1

~ i !

a2
~ j ! g11~a1

~ i !g101a2
~ j !g201KA@a1

~ i !#21@a2
~ j !#2! (97)

representing a line orthogonal tos and tangent to the circle in
point A. One may obtain the solution of the system in Eq.~93! by
solving the system

g1a1
~ j !1g2a2

~ j !2T50 (98a)

~g12g10!
21~g22g20!

25K2 (98b)

where the line in Eq.~98a! is perpendicular to line Eq.~97!. The
parameterT is a free parameter that must be chosen so that
straight line in Eq.~98a! constitutes a tangent to the circle in E
~98b!. It may be deduced by inspection of Eq.~94! that the pa-
rameterT coincides with the failure boundary valuec.

The value ofT is obtainable by solving Eqs.~89a!,~89b!,

T5c5a1
~ i !~rd ,t !g101a2

~ j !~rd ,t !g20

1KA@a1
~ i !~rd ,t !#21@a2

~ j !~rd ,t !#2. (99)

Rewriting Eq. ~86! in Cartesian coordinates for unity require
reliability r c as

c5a1
~ i !~rd ,t !g101a2

~ j !~rd ,t !g20

1KA@a1
~ i !~rd ,t !#21@a2

~ j !~rd ,t !#2. (100)

One immediately recognizes that with the different models of
certainty treated in Section 6 and in the present one lead to
same analytical expression of the failure boundary surface. T
with initial imperfection amplitude given in the same region
variation, these different approaches result into the same de
surface.

9 Critical Remarks
As it is shown in this study, the two-dimensional interval ana

sis provides a design which is a limiting case of the probabilis
design when the required reliability tends to unity from belo
Likewise, convex modeling yields a design to which the proba
listic calculations tend when the variation of uncertain variable
limited to the circular domain. The natural question arises: C
the nonprobabilistic method be preferred to the probabilistic
proach? In general, should the simpler method be preferred to
more complex one?

It appears instructive to reproduce here three relevant qu
tions:

1 ‘‘The aim of science is to seek the simplest explanations
complex functions. We are apt to fall into the error of thinkin
that the facts are simple because simplicity is the goal of
quest. The guiding motto in the life of every natural philosoph
should be, ‘Seek simplicity and distrust it.’ ’’~Alfred North
Whitehead!.

2 ‘‘Everything should be made as simple as possible, but
one bit simpler.’’~Albert Einstein!

3 ‘‘Never use a long word where a short one will do. If it
possible to cut a word, always cut it out.’’~George Orwell!.

If one follows these recommendations one concludes that
interval analysis is the simplest yet tenable method of describ
uncertainty. It leads to the same answers as the theory of p
ability, but without a ‘‘long word,’’ in the above terminology; i
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also appears that the uncertainty modeling cannot be made ‘
bit simpler,’’ to borrow Einstein’s words, than the interval anal
sis. Yet in accordance with Whitehead we do not discourage
‘‘distrust.’’ Indeed, the following challenging questions appears
be in order: Can the interval or ellipsoidal analyses describe fi
excursion failure, fatigue problems, wind loads, earthquake e
neering, and a long list of other issues dealt with some degre
success, recognized at least by some researchers, by the the
probability and random processes? These inspiring question
main yet to be answered. Yet, results reported in this study ap
to be encouraging. They provide a direct bridge between
seemingly opposite techniques. Establishment of identity of
signs furnished by the probabilistic and nonprobabilistic analy
shows that all the analytical roads lead to the same results for
problem in question.
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Nonlinear Dynamic Behaviors of a
Complex Rotor-Bearing System
This paper deals with the long-term dynamic behaviors of a complex rotor-bearing sy
with multi-degrees-of-freedom and nonclosed form of the bearing forces. Since no
lytical bearing forces can be available, to increase the numerical accuracy and decr
the CPU time, a new method is presented to calculate the Jacobians of the bearing
and bearing forces themselves. The algorithm is concise and the computing efforts
on the Jacobians are very small compared to spend on the bearing forces themsel
terms of the feature that the nonlinear bearing forces act on the system individua
new reduction method and corresponding integration technique is proposed to inc
the numerical stability and decrease the computing time for the system analysis
numerical schemes of this study are applied to a rotor system with multi-rigid disks
two elliptical bearing supports. The numerical results reveal very rich and complex
linear behavior of the system.@S0021-8936~00!00802-3#
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1 Introduction
It is a common knowledge that general rotor systems disp

nonlinear behavior due to the hydrodynamic effects that co
from bearing clearances, squeeze film dampers, seals and
sources. A jump phenomenon, which typically occurs in a non
ear system, was first observed by Yamamoto@1#. The subhar-
monic responses in a simple rotor-bearing system was dete
experimentally by Bently@2#. Analytical results also reveal th
nonlinear behavior of the rotor-bearing systems. Assuming sm
nonlinearity for the bearing clearance, Childs@3# studied the oc-
currence of subharmonic motions of the rotor using the pertu
tion method. Choi and Noah@4# analyzed the coherence of sup
and subharmonics in a rotor-bearing model using a harmonic
ance method along with a discrete Fourier transform proced
which was originally used by Yamauchi@5#. Ehrich @6# showed
the presence of high-order subharmonic responses in high-s
rotors with bearing clearance by numerical integrations. Ap
from super and subharmonic responses, aperiodic whirling
tions in a high-pressure oxygen turbopump of the space sh
main engine were also reported by Childs@7# as well as Kim and
Noah @8#.

In rotordynamics, due to the complexity of the nonlinear ana
sis, the nonlinear models of the system are frequently treate
simple ones, such as a symmetrical rigid rotor~see, for example,
@9–11#! or the Jeffcott rotor~see, for example,@4,12,13,6,8#!. In
these models the system only has two degrees-of-freedom an
nonlinear forces of the bearings keep the closed forms. Howe
in practice, the rotor is more complex and the nonlinear for
cannot get the closed forms unless a short~or long! bearing model
is assumed. There are several publications~@14–16#! dealing with
the order reduction methods of the system. These works study
periodic solutions of a high order of unbalanced rotor systems
try to save the computing time.

In this paper, a rotor system with many degrees-of-freedom
a nonclosed form of bearing forces is involved. Since the bea
forces acted on the rotor individually, a new reduction meth
dealing with long-term behaviors of the system, is proposed
reduce the degrees-of-freedom of the system. By means of

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ap
28, 1998; final revision, November 26, 1999. Associate Technical Editor: W. K.
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
lay
me
ther

in-

cted

all

ba-
r

bal-
re,

eed
art
o-

ttle

ly-
as

the
ver,
es

the
and

nd
ing
d,
to

this

method the nonlinear terms of the reduced system still have
local feature and then a corresponding modified Newmark met
is proposed to integrate the responses of the reduced system
iterations that are needed at each step of integrations execute
on small parts of the system equations related to the nonlin
terms. Therefore, compared to the Runge-Kutta method,
method not only is unconditionally stable but also saves the c
puting time significantly.

In the nonlinear analysis of a dynamic system, the Jacobian
the nonlinear forces are necessary to be used. However, fo
real bearings, nonclosed form of bearing forces can be availa
therefore, a great deal of computing effort is needed to calcu
the Jacobians. Based on the theory of variational inequalities
the finite element method, a new method is presented to calcu
the Jacobians of the bearing forces and the bearing forces th
selves. The algorithm is concise and the computing efforts sp
on the Jacobians are very small compared to those spent on
bearing forces themselves.

Finally, a flexible rotor with eight rigid disks and two elliptica
bearing supports is analyzed. The periodic solutions and lo
term behaviors of the system are investigated numerically, wh
reveal many interesting phenomena of a nonlinear system.

2 System Equations of Motion
A typical rotor-bearing system is composed of rigid disks, fle

ible shafts, and bearings. Using the finite element method~@17#!,
system equations of motion can be written as

Mz̈1Gż1Kz5g~ t !1 f ~z,ż,m! (1)

whereM, G, KPRn3n andgPRn are the mass matrix, gyroscop
matrix, stiffness matrix, and unbalance force vector, respectiv
For a rotor withr nodal points, the displacement vector is of th
form

z5@x1 ,y1 ,ux1
,uy1

,x2 ,y2 ,ux2
,uy2

¯ ,xr ,yr ,uxr
,uyr

#T

wherexi , yi and uxi
, uyi

( i 51,2, . . . ,r ) are the lateral transla
tions and rotation angles of thei th nodal point along the horizon
tal and vertical direction, respectively~@17#!. Since the bearing
supports are located individually, the nonlinear force vector is
the form

il
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essor
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f ~z,ż!5

¦

0
]

f xi
~xi ,yi ,ẋi ,ẏi !

f yi
~xi ,yi ,ẋi ,ẏi !

0
]

f xj
~xj ,yj ,ẋ j ,ẏ j !

f yj
~xj ,yj ,ẋ j ,ẏ j !

0
]

§
(2)

where f xi
and f yi

are the horizontal and vertical oil film forces o
the bearing acted on thei th nodal point of the rotor. When the
order of the vector components is rearranged~need not do in
practice!, to simplify notations, Eq.~1! can be partitioned as

F Ma Mab

Mab
T Mb

G H z̈a

z̈b
J 1F Ga Gab

2Gab
T Gb

G H ża

żb
J 1F Ka Kab

Kab
T Kb

G H za

zb
J

5 Hga

gb
J 1 H f a~za ,ża!

0 J . (3)

If the system hass bearings thenza , f a(za ,ża)PRna (na52s) are
of the form

za5@x1 ,y1 ,¯ ,xs ,ys#
T (4)

f a~za ,ża!55
f x1

~x1 ,y1 ,ẋ1 ,ẏ1!

f y1
~x1 ,y1 ,ẋ1 ,ẏ1!

]

f xs
~xs ,ys ,ẋs ,ẏs!

f ys
~xs ,ys ,ẋs ,ẏs!

6 . (5)

Generally only a few bearings are involved in the system, thus
~3! is typically a high-order dynamic system with local nonline
effects. Since much computing time is needed for a high-or
nonlinear system, it is natural to reduce the degrees-of-freedo
the system if the decrease in accuracy of the system respons
small. Nelson et al.@18#, Mclean and Hahn@14#, Shiau and Jean
@15#, and Ntaraj and Nelson@16# have dealt with the order reduc
tion techniques to study the periodic responses of the unbala
rotor with the nonlinear bearing supports. Here a concise
more efficient reduction method for the rotor with the nonanaly
cal bearing supports is presented.

As shown in Eq.~3!, only components ofzaPRna are directly
subjected of the nonlinear forces, therefore truncated modal tr
formation can be used to reduce the degrees-of-freedom ozb

PRnb (nb5n2na). In order to get the basis vectors of the tran
formation, first, the following two eigenproblems are solved:

KF̃A5MF̃AL̃A (6)
KbFb5MbFbLb .

The n3na matrix F̃A and nb3nt matrix Fb are the two eigen-
mode matrices with

F̃A
TMF̃A5I , F̃A

TKF̃A5L̃A , Fb
TMbFb5I , Fb

TKbFb5Lb .

The na3na matricesL̃A and nt3nt Lb are the two diagona
eigenvalue matrices.

ExpandingFb into FB5@Fb

0 # one can identify

FB
TMFB5Fb

TMbFb5I .

However,FB is not orthogonal toF̃A , therefore a new vector se
FA should be established so that following orthogonal conditio
are held:
486 Õ Vol. 67, SEPTEMBER 2000
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FB
TMFA50 and FA

TMFA5I .

This orthogonal process can be achieved by means of Gr
Schmidt method, namely

F̃A2FBE5FAR

whereE5FB
TMF̃A and R is an upper triangular matrix. In this

way, we obtain the new vector setFA , and then the transforma
tion can be written as

H za

zb
J 5@FA ,FB#Hua

uc
J 5F Fa 0

Fab Fb
G Hua

uc
J (7)

whereuaPRna and ucPRnt. Substitution of Eq.~7! into Eq. ~3!
and then the left multiplication of@FA ,FB#T gives the reduced
equations

H üa~ t !
üc~ t !J 1F Da Q

2QT Db
G H u̇a~ t !

u̇c~ t !J 1F La J

JT Lb
G Hua~ t !

uc~ t !J
5 Hqa~ t !

qc~ t !J 1 H f a* ~ua ,u̇a!

0 J (8)

where

Da5FA
TGFA , Db5Fb

TGbFb , Q5FA
TGFB ,

La5FA
TKFA , J5FA

TKFB ,

f a* ~ua ,u̇a!5Fa
Tf a~Faua ,Fau̇a!, qa5FA

Tg, qc5Fb
Tgb .

Thus, the number of the equations of the system has been red
from n(5na1nb) to m(5na1nc). It is evident that the nonlinea
effects definitely remain while the reduced system still has
form of local nonlinearities, which has an important advanta
during the integration procedures.

3 Nonlinear Forces and Jacobians of Journal Bearings
In nonlinear rotordynamics, a short~or long! bearing model is

commonly used so that closed form of the bearing forces can
achieved. For the bearings used in practice, however, nonclo
form of the bearing forces can be available and then numer
calculations have to be done. The relax method and finite elem
method are commonly used to calculate oil film forces of t
journal bearing. Nevertheless, since the Jacobians of the bea
forces are also required in the nonlinear analysis, many more
culations have to be involved. There are two methods to calcu
the Jacobians~which appeared as the dynamic coefficients!. One
is the infinitesimal perturbation method~@19–21#! which solves
partial derivatives of the Reynolds equation with respect to
journal displacements and velocities. The other is the finite p
turbation method~@22,21#!, which calculates the Jacobians fro
finite force differences with respect to the journal displaceme
and velocities. It is evident that the finite perturbation method
not suitable for the nonlinear system due to its poor accuracy
this paper an efficient method is presented which calculates
Jacobians of the bearing forces simultaneously with the bea
forces themselves. When the subscripts indicating bearing n
bers are ignored, to simplify the notations, the nonlinear force
one bearing in Eq.~5! can be written as

H f x5 f x~x,y,ẋ,ẏ!

f y5 f y~x,y,ẋ,ẏ!
. (9)

These forces can be calculated by integrations of oil film press
on the whole oil fields of the bearing~see, for example,@21#!.
That is
Transactions of the ASME
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Fig. 1 Sketch showing one bearing arch of a journal bearing
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f x~x,y,ẋ,ẏ!5E E
V

p~x,y,ẋ,ẏ!•sinudV

(10)

f y~x,y,ẋ,ẏ!52E E
V

p~x,y,ẋ,ẏ!•cosudV

where the pressure functionp is governed by the Reynolds equ
tion for laminar flow,V is the oil field of the whole bearing, an
u is the angle from the vertical direction to the film location~see
Fig. 1!. For the bearing used in practice, cavitation of the oil fi
leads to a Reynolds boundary condition in the Reynolds equa
It was deduced~@23#! that the Reynolds equation with the Re
nolds boundary condition is equivalent to following variation
inequality: FindpPK such that

a~p,q!>b~q!; ;qPK (11)

where

a~p,q!5E E
V

h3S ]p

]u

]q

]u
1b2

]p

]l

]q

]l DdV (12)

is the symmetric and elliptic bilinear form onH0
1(V)3H0

1(V).

b~q!5E E
V

~b•q!dV (13)

is the linear functional on dual space ofH0
1(V).

K5$pPH0
1~V!up>0 in V% (14)

is the subset of the convex cone ofH0
1(V), which is a Sobolev

space.
In the above equations,b is the length-to-diameter ratio of th

bearing, the oil film thickensh and variableb can be written as in
the dimensionless form

h511x cosu2y sinu
(15)

b53~x cosu1y sinu!16~ ẋ sinu1 ẏ cosu!.

By means of the finite element method, the functionp can be
expressed as

p5(
i 51

n

p̃ic i5 p̃Tc ~ p̃5@ p̃1 ,p̃2 ,¯ p̃n#T,c5@c1 ,c2 ,¯cn#T!

(16)

where p̃i and c i ( i 51,2, . . . ,n) are the pressures of the nod
points and global interpolating functions of the finite eleme
respectively. Substituting Eq.~16! into inequality ~11!, one ob-
tains the discrete inequality: Findp̃>0 such that

q̃TAp̃>q̃TB ;q̃>0 (17)
anics
-

m
ion.
-
al

l
t,

where A5@ai j #PRn3n, B5$bi%PRn. The components of the
matrix A and vectorB can be calculated by Eqs.~12! and ~13!,
namely

ai j 5a~c i ,c j !, bi5b~c i !.

The discrete inequality~17! is equivalent to a linear complemen
tary problem~@23#!: find non-negative vectorsp̃,q̃>0 such that

Ap̃2B5q̃ and q̃Tp̃50. (18)

Using complementary iterations~@24#!, Eqs.~18! can be written as

FApp Apq

Aqp Aqq
G H p̃1

0 J 2 HBp

Bq
J 5 H 0

q̃1
J (19)

where p̃1 ,q̃1.0. From Eqs.~12!, ~13!, and~15!, it can be con-
cluded thatA is the function ofx, y andB is the function ofx, y,
ẋ, ẏ. Therefore Eq.~19! can be written as

Â~x,y!p̃5B̂~x,y,ẋ,ẏ! (20)

where

Â~x,y!5FApp~x,y! 0

0 I
G ; B̂~x,y,ẋ,ẏ!5 HBp~x,y,ẋ,ẏ!

0 J .

After p̃ is solved and substituting Eq.~16! into ~10!, one obtains

f x~x,y,ẋ,ẏ!5(
i 51

n

p̃i•si5sTp̃ ~s5@s1 ,s2 ,¯ ,sn#T!

(21)

f y~x,y,ẋ,ẏ!5(
i 51

n

p̃i•r i5r Tp̃ ~r 5@r 1 ,r 2 ,¯ ,r n#T!

where

si5E E
V

c i•sinudV, r i52E E
V

c i•cosudV. (22)

According to Eqs.~21!, the Jacobians off x and f y with respect
to journal displacements~x, y! and velocities (ẋ,ẏ) are

F ] f x

]x

] f x

]y

] f y

]x

] f y

]y

G5FsTp̃x , sTp̃y

r Tp̃x , r Tp̃y
G ;

(23)

F ] f x

] ẋ

] f x

] ẏ

] f y

] ẋ

] f y

] ẏ

G5FsTp̃ẋ , sTp̃ẏ

r Tp̃ẋ , r Tp̃ẏ
G
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wherep̃x5] p̃/]x, p̃y5] p̃/]y, p̃ẋ5] p̃/] ẋ andp̃ẏ5] p̃/] ẏ have to
be solved first. Taking partial derivatives of Eq.~20! with respect
to x, y, ẋ, ẏ gives the following perturbed equations:

Â@ p̃x ,p̃y ,p̃ẋ ,p̃ẏ#5@2Âxp̃1B̂x ,2Âyp̃1B̂y ,B̂ẋ ,B̂ẏ# (24)

where Âx5]Â/]x, Ây5]Â/]y, B̂x5]B̂/]x, B̂y5]B̂/]y, B̂ẋ

5]B̂/] ẋ and B̂ẏ5]B̂/] ẏ, the components of which can be ob
tained by derivation of Eqs.~12! and ~13!, namely

]ai j

]x
5

]a~c i ,c j !

]x
53E E

V
h2 cosuS ]c i

]u

]c j

]u
1b2

]c j

]l

]c j

]l DdV

]ai j

]y
5

]a~c i ,c j !

]y

523E E
V

h2 sinuS ]c i

]u

]c j

]u
1b2

]c i

]l

]c j

]l DdV (25)

Fig. 2 Sketch of the rotor-bearing system for calculation

Table 1 Mass and Inertia of Disk D1–D8

Disk No. D1 D2 D3 D4 D5 D6 D7 D8

Mass~kg! 22 30 34 36 38 40 42 22
Inertia~kg"m2! 0.12 0.62 0.74 0.82 0.98 1.12 1.3 0.1
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]bi

]x
53E E

V
c i cosudV,

]bi

]y
53E E

V
c i sinudV

(26)

]bi

] ẋ
56E E

V
c i sinudV,

]bi

] ẏ
56E E

V
c i cosudV.

It is evident that Eqs.~26! need not be recomputed because th
resemble Eqs.~22!.

The computing works of above algorithm are mainly spent
finding the matrixÂ and vectorp̃ by the complementary itera
tions. Since the perturbed Eq.~24! has the same coefficient matri
Â as the original Eq.~20!, it is evident that few calculation works
join when perturbed Eqs.~24! are solved. Therefore, the compu
ing time spent on the Jacobians is much less than those spe
the oil film forces themselves.

4 Integration of the Reduced System
In nonlinear analysis, the responses of the system are c

monly integrated by the Runge-Kutta method. However, due
nonanalytical function of the bearing forces being involved,
unconditionally stable algorithm is needed. Otherwise the al
rithm will be interrupted because the journal may go out of t
bearing at a certain step of the integration procedures. In ac
dance with the local nonlinearities of Eqs.~8!, the Newmark
method~see, for example,@25#! is adopted in the following modi-
fied form. From timet to t1Dt, the integration equations can b
written as

2

Fig. 3 Leading Floquet multiplier versus n t for v 494 rad Õs

Fig. 4 Journal orbits of two bearing stations calculated by a different reduced model for vÄ494 rad Õs
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Fig. 5 A jump phenomenon—showing time series of velocities of station D1 for vÄ6720 rad Õs

Fig. 6 A jump phenomenon—showing journal orbits of station D1, B1, D5, and B2 for vÄ6720 rad Õs
urnal of Applied Mechanics SEPTEMBER 2000, Vol. 67 Õ 489
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Fig. 7 Wave lines of horizontal velocity of station D1 for several subharmonic motions
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where

F L̃a J̃

J̃* L̃b
G

5F La1
1

aDt2 I 1
1

aDt
Da J1

1

aDt
Q

JT2
1
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QT Lb1

1

aDt2 I 1
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t
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t J 5H qa
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t 2Qu8 c
t
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t 2 ü̃c

t 2Dbu8 c
t 1QTu8 a

t J (28)

f̃ a~ua
t1Dt!5 f a* ~ua

t1Dt ,bua
t1Dt1u8 a

t !

and where 0.5,d<1, a>0.25(0.51d)2 are the control param
eters to get a stable algorithm~this study choosesa50.5, d51!
and
Õ Vol. 67, SEPTEMBER 2000
H ü̃k
t 52

1

aDt2 uk
t 2

1

aDt
u̇k

t 2S 1

2a
21D ük
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u8 k
t 52

d

aDt
uk

t 2S d

a
21D u̇k

t 2S 12
d

2a DDtük
t

~k5a,c!.

(29)

Equations~27! are the nonlinear algebraic equations, so ite
tions are required. Since the nonlinear terms in Eqs.~27! are only
related toua

t1Dt , the iterating efficiency can be improved greatl
In fact, the followingna order of equations can be turned fro
Eqs.~27!,

L̂aua
t1Dt5q̂a

t 1 f̃ a~ua
t1Dt!, (30)

where L̂a5L̃a2J̃L̃b
21J̃* , q̂a

t 5q̃a
t 2J̃L̃b

21q̃c
t . The Newton-

Raphson method gives the following iterating procedures:

ua,k11
t1Dt 5ua,k

t1Dt2@Dua
f̃ a~ua,k

t1Dt!2L̂a#21

3~ q̂a
t 1 f̃ a~ua,k

t1Dt!2L̂aua,k
t1Dt!

(31)

ua,0
t1Dt5ua

t , ~k51,2,̄ !
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Fig. 8 Orbits of station D1 for several subharmonic motions
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where

Dua
f̃ a~ua!5Fa

TS ] f a~za ,ża!

]za
1b

] f a~za ,ża!

] ża
DFa . (32)

Once ua
t1Dt is obtained,uc

t1Dt can be easily calculated by th
following linear equations:

L̃buc
t1Dt5q̃c

t 2J̃* ua
t1Dt. (33)

When the gyroscope matrix is ignored,L̃b is diagonal, and then
computing works can be greatly saved.

By means of the above technique the nonlinear iterations o
need to be executed on thena dimensional scale. So not only th
Journal of Applied Mechanics
nly

quantity of the calculations for each iteration step is saved but
the iteration steps for the convergence are decreased greatl
contrast with the Runge-Kutta method, this method is much m
stable and efficient for the present system.

For unbalance responses of the rotor system~1!, the external
force vector is of the form

g~ t !5w1gc cosvt1gs sinvt (34)

wherew is a constant vector~mostly generated by gravity or gea
forces!, gc , gs are the unbalance force vectors, andv is the ro-
tating speed of rotor. So Eq.~8! is a periodic system with period
T52p/v. The periodic responses of the system can be compu
SEPTEMBER 2000, Vol. 67 Õ 491
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Fig. 9 Torus and torus bifurcation—second and ninth-order of modal phase plains of Poincare ´ map
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by the shooting method and the stability of the responses ca
determined by their characteristic multipliers, the so-called F
quet multipliers~@26#!.

5 Numerical Examples and Results
The unbalance response of a rotor with eight rigid disks~noted

D1–D8! and two bearings~noted B1 and B2! was analyzed nu-
merically ~see Fig. 2!. The shaft~diameter 0.2 m, length 3.6 m
mass density 7850 kg/m3, Young’s modulus 2.0631011 N/m2, and
shear modulus 8.2431010 N/m2! is equally separated by disks an
bearings and each interval is divided into four finite elements.
the finite element model of the system has 37 nodes and tw
them are supported by nonlinear bearings. Two elliptical beari
~pad arch: 160 deg, length-to-diameter ratio: 0.6, clearance to
dius ratio: 0.003, elliptical ratio: 0.4, and oil viscosity: 0.02
N"sec/m2! are used at B1 and B2 stations. The mass propertie
eight disks are listed in Table 1. Three unbalance values~having
total mass of rotor, 1-mm eccentricity, and the same rotating pha
angle! are located at the D1, D5, and D8 stations. The calcula
results are shown in the dimensionless form. The related un
time, displacement, and velocity are 2p/v, cmin , and vcmin
wherev is rotating speed of rotor andcmin is the top clearance o
the elliptical bearing.

It is evident that the accuracy of the calculated results depe
on how many eigenmodes are taken in the reduced model. In
case, the system has 148 degrees-of-freedom and four of them
directly affected by nonlinear forces (n5148,na54). So the
degrees-of-freedom of the reduced system depends onnt , the
number of the second set of eigenmodes~see Section 2, the
degrees-of-freedom of the reduced system arem5na1nt!. Tak-
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ing the rotating speed asv5494 rad/s, the periodic solutions o
the unbalanced system were calculated for several values ofnt .
Figure 3 shows leading Flouqet multiplier~notedr1! againstnt .
Figure 4 shows journal orbits at two bearing stations for so
differentnt . It is seen from these two figures that the accuracy
the results increases as more eigenmodes are taken in the re
model and reaches high precision whennt512, since the results
of nt512 and 14 are almost identical. This is because higher o
modes are nearly unexcited by the unbalance forces. Therefor
the following calculations, the 16 degree-of-freedom reduced s
tem is accepted and the modal displacements are arranged i
orderua1 ,ua2 ,ua3 ,ua4 ,ub1 , . . . ,ub12.

It should be pointed out that by the present method the co
puting process is carried out smoothly, no matter how many s
are taken in one period although the nonclosed form of the b
ing forces are used. However, if the Runge-Kutta method is us
the integration process will be interrupted unless many more s
~depend on forcing frequency and the highest natural frequenc
the reduced system! are taken in one period.

The unbalance responses of the system loses stability as r
ing speed increases to 5171 rad/s when two complex conju
Floquet multipliers leave the unit circle transversely. So a qua
periodic bifurcation appears~@27#!. Beyond the bifurcation point
unbalance responses become unstable. A jump phenome
which typically occurs in a nonlinear system, is detected forv
56720 rad/s. In Fig. 5, the time series of the velocities at stat
D1 appears to suddenly jump from a low level of unstable pe
odic response to a high level of stable quasi-periodic respo
Figure 6 shows the jump figures of the journal orbits at statio
D1, B1, D5, and B2, respectively.

Apart from the jump phenomena, the system shows a vari
Transactions of the ASME
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Fig. 10 Time series and corresponding FFT spectrum of first order of modal velocity for a chaotic state
„vÄ12623 rad Õs…
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order of subharmonic responses as well as quasi-periodic
sponses. Figures 7 and 8 give the horizontal velocity respo
and orbits of one nodal point~station D1! for the subharmonic
~1/7, 1/5, 1/13, 1/8, 1/11, and 1/3! motions. This phenomenon o
subharmonic motions, in which the ratio of the forced frequen
and the response frequency becomes rational, is called phase
ing or mode locking~@27#!. In fact, in the frequency range 5174
11340 rad/s a large number of closed branches of subharm
motions~locked states!, occurring in very tiny frequency intervals
can be found. Comparing to subharmonic motions, quasi-peri
responses are more frequently encountered in that frequ
range. The quasi-periodic solution forv56751 rad/s appears
torus attractor in Poincare´ section, and asv increases to 8423
rad/s, a torus bifurcation happens~@28#!. Figure 9 shows projec-
tions of Poincare´ maps onto the two typical modal phase plains
Applied Mechanics
re-
ses

f
cy
lock-

onic
,
dic
ncy

of

these torus and torus bifurcation figures.
Finally, as rotating speed reaches tov512623 rad/s, a chaotic

motion appears ~Lyapunov exponents: l1511.36, l2
50,l3 , . . . ,0; @26#!. This chaotic state is illustrated by the tim
series of the first order of modal velocity and corresponding F
spectrum~see Fig. 10!. Logarithmic plot for FFT spectrum is use
to highlight components with low power levels—an impotent fe
ture of chaotic spectra. The time series is obviously irregular. T
FFT spectrum is broadband, and contains substantial power a
frequencies. A sharp component atv/2p is also present. Though
a broad spectrum does not guarantee sensitivity to initial co
tions, it is, in practice, a reliable indicator of chaos~@29#!. Figure
11 shows trajectory of four typical modal phase plains, wh
present very beautiful patterns—a typical characteristic o
strange attractor.
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Fig. 11 Chaotic motion—trajectory of four typical order of phase plains for vÄ12623 rad Õs
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6 Conclusion
By a hybrid of two sets of eigenmodes of a rotor-bearing s

tem a new modal reduction technique was presented. The ad
tages of the reduction model are that not only the degrees
freedom of the system are greatly reduced but also the nonli
terms in the reduced modal system remain the local feature
modified Newmark method, which is more suitable for the pres
system than the Runge-Kutta method, is developed to integrat
responses of the system. The new method is uncondition
stable and the nonlinear iterations only need to be executed o
equations related to the nonlinear forces. Since the number o
nonlinear forces are very small compared to the number of sys
equations, the new method saves significant computing time.

Since, for a rotor used in practice, the bearing forces canno
the closed form, the nonlinear forces and Jacobians of them h
to be calculated numerically. These calculations will take a gr
deal of computing time and cause accuracy problems. Base
the theory of variational inequalities and the finite eleme
method, a new method is presented to calculate the Jacobia
the bearing forces and bearing forces themselves simultaneo
The algorithm is concise and the computing efforts spent on
cobians are very small compared to those spent on the bea
forces themselves.

The numerical schemes of this study are applied to a la
order flexible rotor system with eight rigid disks and two elliptic
bearings supports. The rotor is divided 36 finite elements,
then a discrete system with 148 degree-of-freedom and four n
linear bearing forces is obtained. The numerical results show
a 16 degree-of-freedom reduced model gives satisfactory accu
while the computing efforts are cut down greatly. A qua
Õ Vol. 67, SEPTEMBER 2000
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periodic bifurcation was found for a group of bearing paramete
After the bifurcation point a jump phenomenon was detected
the system appears a large number of closed branches of su
monic motions~mode locking cases! occurring in very tiny fre-
quency~rotating speed! intervals. As the rotating speed increase
the system undergoes torus, mode locking, torus bifurca
states, and finally goes to chaos.
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The Kinematics of Wheat Struck
by a Wind Gust
A nonlinear model of the kinematics of a wheat stalk struck by a wind gust is devel
Individual stalks were excited from each of many directions and observed by video
tography. The underdamped flexural response involved anisotropic circling motion
can be reproduced by a nonlinear system of ODEs. In the model, the horizontal
traveled by the grain mass is described in principal coordinates XI and XII . The four
required constants are stiffnesses kI,kII in these directions, linear viscous dampingz,
and coupling strengthb related to a torque imposed by wind drag. This stem torque
cause nonlinear coupling if both XI and XII are excited and if kIÞkII , such that damping
can vary by 30 percent over each cycle. The directionality of the single stalk may pro
interplant collision, which could have important integrated effects on crop behavio
larger size scales.@S0021-8936~00!02303-5#
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Introduction
Wind and gravity are the dominant forces acting on most

restrial plant species~@1,2#!. Structural failures that permanentl
displace a cereal crop from the vertical are calledlodging ~@3–6#!.
Lodging can inhibit crop development, promote fungal infectio
and complicate harvesting~@7#!. Modern cereal crops grown with
high fertilizer inputs are often more susceptible to lodging th
older varieties grown by traditional methods~@8–10#!. Steady im-
provement of lodging resistance is an important priority in wh
breeding science~@11#!. Lodging reduces grain yield 10 to 3
percent worldwide~@12#!. Even the lower estimate is a significa
fraction of total human caloric intake, and lodging is a ma
limiting factor on global food production.

Lodging is typically precipitated by wind combined with rain o
irrigation ~@7#!. The particular structural failure may involve buck
ling or splitting of the lower stem~@13#!, or rotation of the root
relative to the soil~@14,15#!. In either case, the driving force is th
drag exerted on the grain mass at the top of the slender s
~@16#!. Wind tunnel study has shown that velocity profiles near
surface of a model canopy are similar to a plane mixing la
~@17,18#!. The turbulent flow is dominated by intermittent hor
zontal eddies and mean velocity drops rapidly closer to the gro
~@19#!. The top of each stalk is subjected to successive impu
loads from varying directions.

Wheat is a member of the monocot or grass family~@20#!. A
maturing plant consists of one or more tillers~stalks! growing
from a single root~Fig. 1!. The hollow culm~stem! is nodally
segmented and supports an inflorescence called the spike.
grain bearing organ is typically covered with needle-like stru
tures called awns. Each of the several leaves has a tubular
that ensheathes and supports the stem. The spike increases i
and mass as the tiller matures. This increases wind drag,
presumably, increases lodging tendency~@16#!. There are observ-
able differences in the lodging resistance of different varieties
wheat ~@14,21#!. In addition, environmental factors affect th
lodging resistance of each variety to varying degrees~@15,22#!. In
practice, wheats with short stiff stems are often more resistan
stem buckling~@8–11#! while wheats with compliant stems ma

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
30, 1999; final revision, Feb. 4, 2000. Associate Technical Editor: N. C. Perk
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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be less susceptible to root lodging in weak or water-satura
soils. Wheat scientists must balance the competing constraints
posed by stem rigidity and flexibility in order to select the be
varieties for a given growing environment.

The ultimate goal of this research is to use applied mechanic
quantify the interaction between the atmospheric boundary la
and wheat. Surface winds can induce large-scale plant mot
calledhonami~@23#!. Similar phenomena can be induced by tid
currents passing over submerged aquatic vegetation~@24#!. In both
cases, the synchronous aeroelastic~or hydrodynamic! canopy be-
haviors~@25#! involve coherent phase-separated vibration of ma
plant stalks~@17#!. The physics of these wave-like motions, an
their possible relationship to lodging, are not fully understood. W
can begin to address this issue by examining the kinematic
wheat at a smaller size scale. The objective of this study wa
develop a model of a single stalk struck by a gust from an a
trary angle.

Methods
Standard horticulture was used to grow two varieties of wh

using seed obtained from the International Center for Maize
Wheat Improvement, in Mexico. All plants were grown in
climate-controlled glasshouse at the USDA-ARS Research Ce
in Beltsville, MD. Both varieties are suitable for irrigated env
ronments althoughBaviacora is more resistant to lodging tha
Bacanora~@21#!. Planting density was equivalent to 400 seeds
square meter. The growing medium was a 4:1 clay soil and s
mixture. Natural light was supplemented with artificial lightin
and cooling to obtain 14-hour photoperiod and 22°C nightti
temperature.

The free-vibration response of selected tillers was observed
ing videophotography. All tests were conducted on matur
plants at the timepoint called dough development or Growth St
83-85~@26#!. A straight stalk was chosen from each of ten pots p
variety. All leaves were clipped close to the stem, and white tra
ing markers were painted on the nodes and spike. The other ti
in the same pot were cut at the ground level. The pot was dra
with black cloth to minimize background clutter.

The tiller was subjected to a series of impulse tests. The
apparatus consisted of a high-pressure air source~scuba tank!, a
pressure regulator, a computer-controlled valve, and a spe
pneumatic gun~Fig. 2!. The gun discharged a horizontal pulse
gust from a 2-mm-diameter nozzle. Flow visualization using w
ter droplets showed the flow expanding within a 12-deg con
envelope as it traveled towards the tiller. The gun was aime
the spike from a standoff distance of 0.50 m to ensure that
tiller did not hit the gun on its return swing. A Macintosh PM
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Fig. 1 Key structures of a single wheat stalk

Fig. 2 Camera view of synthetic gust test apparatus
Journal of Applied Mechanics
7100 computer with National Instruments data acquisition boa
used LabView software to regulate the number, duration,
spacing of the gusts. In practice, four identical 0.250-second g
were delivered at 25-second intervals for each angle. Each
produced an underdamped flexural oscillation that was simila
the response observed in the field on a breezy day~i.e., 5–10 m/s
winds!. By convention, thex-axis was aligned with the gust, th
y-axis was at right angles to thex-axis in the horizontal plane, and
the z-axis was vertical.

The kinematic response was monitored by a tripod-moun
S-VHS video camera~Sony #SSC-S20!. Referring to Fig. 2, the
camera viewed the potted plant beneath a plane mirror incline
45 deg~the mirror is not shown!. The setup allowed the camera t
record the underdamped plant vibration in sideview (x–z) or in
the topview (x–y) reflected by the overhead mirror. Each tille
was brightly illuminated by 500-W Fresnell lens stage lamps.
pinhole iris was used to maximize depth of field. The 4803640
pixel image was tightly framed using an electric zoom lens~Rain-
bow #M-II with #A-III controller!. The video capture rate was 6
frames per second. The shutter speed was 0.001 second.

Tiller orientation relative to the gust was varied by rotating t
pot. Tests were performed at each of 24 orientations at 15-
increments relative to an arbitrary reference marked on the po
practice, the projected motion seen in the horizontal image pl
captured the essential features of the underdamped transient

Pilot study showed that the path in duplicate tests was rep
ducible within one or two pixels, so only one typical test w
analyzed at each angle. A digital copy of the first five seconds
motion was made using a Sony Time-lapse VCR player~#SVT-
S3100!. The A/D conversion was performed using the built-
digitizer on a Macintosh PM 8600 computer. A digital clip fo
each angle was saved as a TIFF stack of 300 fields~60 MB per
stack!. The first field in each stack showed the tiller just befo
gust impact. NIH Image software was used to measure thex–y
coordinates of the spike marker. The pixel coordinates were fo
using semi-manual techniques because a skilled human ope
~JZW! was more effective than pattern recognition algorithm
with regards to compensating for varying marker illuminatio
shadowing, and reflectivity. Pixel size was calibrated using a s
rule placed in the field of view. Spatial resolution was in the ran
of 1.1 to 1.7 mm per pixel.

Forward differencing of the video-based position data was u
to calculate velocity and acceleration at each time-step. Sim
tion of the model response relied on numerical techniques
lined later in context. Various methods are available for asses
the significance of differences between experimental sam
means~@27#!. In general, the probabilityp that any given differ-
enceD is meaningful increases as the number of observationn
increases. It is common practice in hypothesis testing to report
probability that a difference is significant, or alternately, to rep
that the difference is not significant~abbreviated N.S. in Table 1!
because it did not attain a pre-selected probability level. In
present study, significance was set atp,0.001 and the compari-
sons of means were performed using confidence intervals b
on the Student t test statistic~@28#!.
Table 1 Average „standard deviation … of physical properties for two varieties
SEPTEMBER 2000, Vol. 67 Õ 497
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Results—Experimental
In the sideview, each gust excited an underdamped oscilla

that lasted 10 to 20 seconds. The peak velocityv̂ and the peak
accelerationâ were not significantly different between the tw
varieties~Table 1!. In contrast, the tiller lengthL, the peak dis-
placementx̂, and the frequency of oscillation along the gust a
v̄x were significantly different. These and other differences
tween the two varieties were accentuated in slow motion.Bavia-
cora exhibited a lopsided flopping motion with the spike oscilla
ing at a higher frequency than the stem, whileBacanoraexhibited
a faster motion with the spike and stem oscillating as a u
Figure 3 shows the first quarter cycle of motion for a typical til
of each variety. Each set of interconnected black dots shows s
tracking markers at 1/30 second intervals. The leftmost set s
the neutral position prior to gust impact, the rightmost set sho
the maximum deflection after the gust, and the asterisk indic
the timepoint at which the gust ended. The space between su
sive markers is a measure of velocity. One can perceive hig
frequency mode shapes superimposed on the fundamental m
but these did not persist past the first half-cycle. Hence, the
sponse signal over most of the experimental record was do
nated by low-frequency behavior.

The flexural response showed a clear dependence on gus
entation for some but not all tillers tested~i.e., 12/20560 percent!.
For example, Fig. 4 shows thex–y pathlines traveled by the spik
of a tiller identified asBaviacora-2. Each pathline is a two-poin
fit to the unsmoothed position data. The record length is five s
onds, the spatial resolution is 1 mm per pixel, and repeatabilit
1 to 2 pixels. The gust always traveled from left to right since g
alignment relative to the tiller was changed by rotating the pla

Fig. 3 First quarter cycle of motion for two varieties „sideview …
498 Õ Vol. 67, SEPTEMBER 2000
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The indicated angleu was measured relative to an arbitrary p
reference. Note various patterns of symmetry. For example,
90-deg path mirrors the 150-deg path with respect to the horiz
tal axis. The intricacy of the global path arises from the prese
of several vibration modes excited to varying degrees accordin
gust alignment.

Linearization is the key to rational analysis of many physic
problems but linear theory cannot adequately explain the k
matic behavior typified by Fig. 4. In contrast, the ensuing dev
opment shows that simple nonlinear theory can provide very u
ful insights.

Results—Modeling
The salient feature of the free response was the anisotr

circling exhibited by some but not all tillers. We therefore seek
develop a model that can explain both the origin and the varia
ity of this directional behavior. The shape of the pathlines in F
4 is strongly angle-dependent. This kinematic anisotropy w
quantified using a special deviation metric

k5(
i 51

t
uyi u

uxi u1r
, (1)

which was based on the raw integer valued pixel coordinatexi
and yi at time-pointt i . The summation spanned the firstt5300
time-points after gust impact. It is conceptually useful to consi
k to have SI units of m/m. The resolution factorr51 avoided zero
denominator errors ifxi50.

For each variety, 4/10540 percent of the tillers exhibitedk̂
,1.0 for all angles. In these cases, the spike behaved like a
degree-of-freedom oscillator aligned with the gust. Let us vi
these tillers as a degenerate case of a more general situation.
cifically, for each variety, 6/10560 percent of the tillers exhibited
wide variations ink̂, which varied between zero and some val
greater than 2.5 as the pot was rotated relative to the gust.
example, Fig. 5 showsk as a function of gust angleu for the tiller
designatedBaviacora-2.

The spike motion recorded in the topview had three degree
freedom~two translations, one rotation!. Let us assume that the
motion seen in the image plane was the sum of at most th
isochronous vibrations, implying that the periodicity and decay
each were independent of amplitude~@29#!. In this way, the infi-
nite degree-of-freedom response of the physical tiller can be
alized as that of a finite degree-of-freedom harmonic oscillato
Fig. 4 Experimental pathlines for Baviacora-2 „topview …. The angle u is measured rela-
tive to an arbitrary reference.
Transactions of the ASME
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For an initial linear model, let us fix the rotational degree-o
freedom and assume that thex–y motion of the spike is that of a
massm constrained by two orthogonal spring-and-dashpot u
~Fig. 6!. This lumped parameter model has two explicit degr
of-freedomXI and XII with associated stiffnesskI,kII and vis-
cous dampingCI and CII for i 5I or II . The physical gust of
known duration was then idealized as an impulseF(t) acting at
t5t1 . This timepoint would occur just after the real pulse end
implying about 0.250 seconds between the first frame of the vi
data and the model start timet1 . For each gust orientationi, the
impulse must form some some as yet undetermined anglef I with
the compliant degree-of-freedomXI . Note thatf has an intrinsic
relationship to the tiller function, and must therefore be dist
guished from the angleu measured relative to an arbitrary lab
ratory reference.

If d is the Dirac delta andFo51, the impulseF(t)5Fod (t1)
can be resolved into componentsFI5cosf andFII 5sinf. If the
two degrees-of-freedom are decoupled and the system is lig
damped, the equation of equilibrium is

Ẍi12z iv i Ẋi1v i
2Xi5d~ t1!

Fi

m
, (2)

where i 5I or II , the damping factorsz I5CI /(2v Im) and z II

5CII /(2v II m), and the resonant frequenciesv I>(kI /m)0.5 and
v II >(kII /m)0.5. Note that the extrema ofk occur when the gust is
aligned with eitherXI or XII .

One can setFo51 and m51 after recognizing that the pre
dicted model path is geometrically similar for allF andm. Equa-
tion ~2! can be solved fori 5I and II using Laplace transform
methods with initial conditionsXi(t1)50 andẊi(t1)50. The par-
ticular solution has the form

Fig. 5 Special deviation metric as a function of gust angle for
Baviacora-2

Fig. 6 Diagrammatic representation of a two-degree-of-
freedom model.
Journal of Applied Mechanics
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Xi5
Fi

Bi
exp~2Ait !sin~Bit ! (3)

whereAi5z iv i andBi5v i(12z i
2)0.5 for i 5I and II .

The required constants were obtained for each tiller as follo
The frequency of vibration along thex-axis was observed to settl
to a different value for each angle. The average value at anglu i
~for i 51 to 24! was defined as

vx~u i !5
2p~q23!/4

~t2p!/60
5

30p~q23!

t2p
(4)

wherep was the time-point at which the spike reached its ma
mum upwind position~at 3/4 cycles!, t was the last time-point in
the five-second record, andq was the noninteger number of qua
ter cycles in the digital clip. Figure 7 showsvx as a function of
angle u for Baviacora-2. The extrema of the discrete functio
were assumed to be very close to the resonant frequenciesv I and
v II , since the minimumv I should occur whenf is 0 orp radian,
and the maximumv II should occur whenf is p/2 or 3p/2 radi-
ans. For other angles, at least two vibration modes may be exc
with each contributing to the perceivedx motion.

It had been tacitly assumed that two damping factorsz I andz II
were required to describe the linear viscous damping of mo
along the two principal directions. Experimental estimates
these parameters were obtained using the logarithmic decre
ratio approach~@30#! for the four orientations aligned with one o
the principal directions. The assumption of isochronicity requir
that each degree-of-freedom had constant stiffness, so the val
the log decrement ratiod52p z was based on the average of th
downwind log decrements

d̂ ~ i !5 ln
x̂~ i !

x̂~ i 11! , i 5~2,3, . . . ,s21! (5)

and the upwind log decrements

ď ~ j !5 ln
x̌~ j !

x̌~ j 11! , j 5~1,2, . . . ,r 21! (6)

wherex̂( i ) is the maximum downwind displacement on cyclei and
x̌( j ) is the maximum upwind displacement on cyclej. The limitss
and r denote the last complete downwind or upwind half-cycle
While the values ofd I and d II could be different, they were es
sentially identical~within three percent! for each tiller considered.
This motivated the additional constraintz I5z II wherez I was a
constant. In turn, this impliedCII 5(v II /v I)CI , which reduced
the number of independent parameters in the model by one.
@30# has shown that the damping factor of an harmonic oscilla
can be interpreted as the ratio of energy lost per cycle to the t
energy in a vibrating system. Hence, it may be conceptually us
to considerz to have SI units of J/J.

The path of the linear model had to evolve at the correct f
quenciesv I and v II , but it could still drift away from reality
when the physical system did not exhibit linear damping. T
experimental record was short, so large discrepancies were
detected under certain conditions. In particular, the damping

Fig. 7 Frequency of vibration along the gust axis as a function
of gust angle for Baviacora-2
SEPTEMBER 2000, Vol. 67 Õ 499
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the compliant axisXI was lower and damping of the stiffer ax
XII was higher in some cases, but only when the gust formed
oblique angle with both principle axes.

This observation revealed the limitation of the linear theo
Fortuitously, the canonical form of the model can be modified
address this concern. Let us now view the recordedx–y motion as
that of a system in which dissipation can arise either from~1!
linear viscous damping due to stem flexion, or from~2! nonlinear
damping due to stem torque imposed by spike drag. To illust
the physics, Fig. 8 shows a foreshortened view of a stem with
internodes obtained by looking down from the spike. The stem
rooted at the origin and the spike is attached at the shaded c
section. The flexural deflections areUI.UII , and spike dragFD
exerts force componentsFI and FII on the moving stem. This
exerts a net torque that induces a twist anglej. Let us assume tha
the linear damping is proportional to viscous forceFL , and that
the nonlinear damping is proportional to the stem torque. Hen
the variation in the magnitude and line of action ofFD is respon-
sible for the model nonlinearity.

The drag on a rigid body exhibits quadratic dependence
airspeed but a flexible aeroelastic structure~@25#! can reduce its
frontal area as relative velocityẊ increases. This is the situatio
for a green wheat spike~@16#!, for which

FD>2CDẊ (7)

where the drag factorCD is an empirical constant. Moreove
spike drag is not in general aligned with the velocity vector a
can therefore subject the stem to torsional as well as flex
acceleration.

The time dependence of the torque can be appreciated by
ting z50 ~indicated below by a tilde!. If the tiller in Fig. 8 is
moving back to the neutral position shortly after the initial puls
Eq. ~7! indicates that drag componentsFI andFII are more or less
proportional to velocity components varying withv I cosṽIt and
v II cosṽII t, and acting at moment arms varying more or less w
sinṽII t and sinṽIt, respectively.~Recall that the undamped mod
frequenciesṽ I andṽ II are the resonant frequencies of the ligh
damped physical system.! If we assume that the drag factorCD is
isotropic ~i.e., a scalar!, the stem torque is

T52CD~ẊII XI2ẊIXII ! (8)

Fig. 8 Foreshortened topview of stem as viewed from the
spike
500 Õ Vol. 67, SEPTEMBER 2000
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where a positive value acts counterclockwise. In Fig. 8,T is posi-
tive and tends to swing the spike towards the stiffXII -axis. At
later times, the upper limit onT is the undamped torqueT̃, which
is

T̃5b̃@ṽ II cos~ṽ II t !sin~ṽ I t !2ṽ I cos~ṽ I t !sin~ṽ II t !# (9)

whereb̃52sin 2f CD/2 must be zero if the gust is aligned wit
one of the principal axes. Ifb5v I1v II and a5v II 2v I.0, it
can be shown that

T̃5
b̃

2
@b sinat2a sinbt#. (10)

For example, a tiller oscillating atv I50.9 Hz andv II 51.0 Hz is
subjected to a small torque varying at 1.9 Hz and a larger tor
varying at 0.1 Hz. Figure 9 shows the undamped torque over
first five seconds based on the averagev I andv II of both variet-
ies. In general, the imposed torque is a nonperiodic function
time.

The nonlinear model preserved the basic structure of the lin
model but related the torque to two nonlinear products involv
both translational degrees-of-freedom. This allowed the tim
varying effect of stem torque on the translational response to
recognized without explicitly adding the third degree-of-freedo
j. With this conceptual advance, the damping parameters in Fi
must vary in a specific nonperiodic manner, which is described
Eq. ~8! within a single scaling factor. For unit impulseFo51 and
unit spike massm51, the coupled equations of equilibrium are

ẌI1~2zv I2bXII !ẊI1kIXI5d~ t1!cosf, (11)

and

ẌII 1~2zv II 1bXI !ẊII 1kII XII 5d~ t1!sinf, (12)

whereki5v i
2 for i 5I or II . The coupling strengthb provides a

measure of dissipation due to stem torque, and has SI unit
radians per second per meter~Table 2!. In general, the nonlinea
damping can only be large when flexural anisotropy and defl
tion are both large. The nonlinear term in Eq.~11! carries a nega-
tive sign and tends to reduce the decay ofXI motion. In contrast,
the nonlinear term in Eq.~12! carries a positive sign and tends
increase the decay ofXII motion.

Fig. 9 Undamped stem torque as a function of time for two
varieties „normalized by maximum value over interval …
Table 2 Average of model parameters required to fit kinematic response for
two varieties
Transactions of the ASME
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Fig. 10 Simulated model pathlines for Baviacora-2 „compare to Fig. 4 …. The angle f
is measured relative to an intrinsic reference.
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Equations~11! and ~12! comprise a system of coupled nonlin
ear ODE’s with four constantskI , kII , z, and b. Approximate
solutions for the interval zero to five seconds can be found
merically by exploiting initial similarity to the linear system. A
first trial solution of Eq.~11! for XI at t25t11Dt was obtained by
setting XII equal to the value that satisfied linear Eq.~2! for i
5II . Equation~12! was then solved forXII by settingXI to the
value just obtained. Newton-Raphson refinement was contin
until XI andXII changed by less than 0.01 percent on succes
interations. The solution was then marched forward using a s
lar procedure but starting with theXi from the previous step. The
time-stepDt was progressively increased from 0.005 to 0.02 s
onds. This algorithm was effective because the damped solu
was smooth. No more than ten iterations per step were requ
Since the offset between model anglef and experimental angleu
was unknowna priori, simulations were performed at 1-deg in
crements to allow accurate indexing of model and experime
pathlines.

The parameterskI , kII , and z were determined from the ex
perimental record as described above. In the linear model,
coupling strengthb was equal to zero. In the nonlinear model,b
had a recognizable physical meaning but also served as an ad
able model parameter. The best match between model and ex
ment was obtained by optimizing the fit when the gust forme
45-deg angle with both principal directions~i.e., when the nonlin-
earity was strongest!. At these four orientations, the last cycle
the model path was defined backwards from the end of the dig
clip. The optimalb was chosen using a least-squares criterion t
minimized the angular mismatch between the long axes of the
model and experimental cycles.

Figure 10 shows the predicted pathlines for comparison to
experimental data shown earlier in Fig. 4. The quality of fit
typical of all tillers. In Table 2, the tillers are grouped by varie
and by deviation metric. The average values of the model par
eters are given for each of the four groups, which represent a
tillers studied. For either variety, the kinematic response could
allocated to one of two groups. In the first category,k̂max was
small, the flexural response was isotropic, and the damping
linear viscous. For these cases, only two unique model cons
were required. In the second category,k̂max was large, the flexura
response was anisotropic, and the damping exhibited varying
grees of nonlinearity. In this case, three or four of the mo
constants were unique and nonzero.

There were consistent differences between the two varie
For the variety calledBacanora, the flexural response was stif
and the coupling strengthb was always close to zero. For th
echanics
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variety calledBaviacora, the response was flexible, andb was
only close to zero whenk̂max,1. For the otherBaviacoratillers,
the coupling strength was large, the deviation metric varied w
angle, and nonlinear damping had a detectable influence on
evolving path. In the next section, we show that the nonlin
theory provides a unifying description of the observed behav
while providing a plausible explanation for the considerable
versity between plants.

Discussion
A wheat tiller is a flexible living structure subjected to dynam

wind loads. We found that its behavior was unexpectedly rich
mechanical complexity. A horizontal gust caused lateral deflec
of the cantilevered stem. The ensuing transient was highly rep
able but sometimes involved a strongly anisotropic response.
klas and Moon@31# have also reported that garlic stalks can e
hibit qualitatively similar circling motions. Previous studies
wheat have deemphasized this flexural directionality~@22,32#!.
Hence, the real novelty of the present study lies in its quantita
treatment of the kinematic anisotropy of a wheat stalk.

The free-vibration response to a gust was dominated by
low-frequency modes. The low ripple and high repeatability of t
response signal made it reasonable to neglect forced-vibration
sponse due to random excitation. Serial tests showed that the
nant frequencies were slightly lower if the leaves were not
moved or if the soil was watered, but these observations did
detract from the generality of the conceptual model.

Comparison of Fig. 10 and Fig. 4 shows that the nonlin
model can reproduce the essential nature of the physical respo
The nonlinear model has two explicit flexural modes coupled
an implicit torsional mode. The third mode allows drag to dis
pate additional energy and the associated torque redirects the
tical plane of vibration towards the most compliant axis. Intere
ingly, the torsional stresses would be largest in the lower st
whose properties have been correlated with lodging resista
~@21#!.

Each of the four model constants has tangible physical me
ing. For example, an isotropic response implies thatkI>kII and a
stiff response implies thatb>0. However, more than half of the
Baviacoratillers exhibited compliant anisotropic behavior, whic
requires the use of all four constants.

The degree of kinematic anisotropy could only be assesse
observing the physical response to a gust from several ang
While some stem internodes had slightly elliptical cross-secti
and all spikes had an irregular flexible geometry, no single m
SEPTEMBER 2000, Vol. 67 Õ 501
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sure of structural anisotropy was able to explain the orientati
of XI and XII inferred from the functional anisotropy. For th
reason, the responses of two plants with similar appearance
often unexpectedly different. The model suggests that this k
matic variability between plants could be due to the subtle qu
titative interplay between torsional and flexural vibration mod
Functional diversity within a plant population could have impo
tant implications for crop behavior at larger size scales. In part
lar, variations in the orientation and anisotropy of the circli
response to a gust may increase the frequency of interplant c
sion. These impacts could substantially increase loadsharing
energy dissipation within a dense canopy. Kinematic anisotrop
the scale of the single tiller may be inseparably related to c
lodging resistance. Further quantitative study of this relations
should be instructive.
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Dynamic Singular Moments in a
Perfectly Conducting Mindlin
Plate With a Through Crack Under
a Magnetic Field
Following Mindlin’s theory of plate bending of magnetoelasticity, we consider the s
tering of time-harmonic flexural waves by a through crack in a perfectly conducting p
under a uniform magnetic field normal to the crack surface. An incident wave giving
to moments symmetric about the crack plane is applied. It is assumed that the pla
the electric and magnetic permeabilities of the free space. By the use of Fourier t
forms we reduce the problem to solving a pair of dual integral equations. The solutio
the dual integral equations is then expressed in terms of a Fredholm integral equati
the second kind. The dynamic moment intensity factor versus frequency is comput
the influence of the magnetic field on the normalized values is displayed graphically
found that the existence of the magnetic field produces lower singular moments ne
crack tip. @S0021-8936~00!02603-9#
.
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Introduction
If an electrically conducting material is used in a strong ma

netic field, we must consider the effect of induced currents. T
dynamic behavior of an electrically conducting elastic plate
sufficiently affected by the presence of a strong magnetic fi
~@1–3#!. Design and development of superconducting structu
require basic research on electromagnetic fracture mechanics
stress intensity factor approach of linear elastic fracture mecha
has proved to be very successful in predicting the unstable f
ture of brittle solids~@4,5#!. When cracked conducting materia
are subjected to strong magnetic fields, the same approach i
pected to apply. Shindo et al.@6,7# have considered the scatterin
of time-harmonic flexural waves by a through crack in a condu
ing classical plate under a uniform magnetic field normal to
crack surface for two special cases, perfect conductivity
quasi-static electromagnetic field. For general references on m
netoelasticity, we refer to the monographs of Moon@8#, Maugin
@9#, and Parton and Kudryavtsev@10#.

In this investigation, the scattering of time-harmonic flexu
waves by a through crack in a perfectly conducting Mindlin pla
under a uniform magnetic field is analyzed to show the effec
induced current. At low temperatures many materials become
perconducting, that is, perfectly conducting. Although the so
tions of the present paper are concerned, in principle, with
infinite electric conductivity, they can be used to obtain an
proximate appraisal of the influence of finite electric conductiv
at low temperatures~see Appendix A!. A frequently encountered
crack shape is the surface crack. The solution of the through c
problem may be useful in studying the surface crack problem
the application of the plate theory-line spring method~@11#!. The
results for the case with a partial crack can be estimated by
formulation of the conducting plate containing a through cra
under arbitrary membrane and bending loads and the solutio
the corresponding plane-strain problem for the conducting
dium with an edge crack. Mindlin’s theory of plate bending~@12#!

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
10, 1997; final revision, Nov. 22, 1998. Associate Technical Editor: M. Taya. D
cussion on the paper should be addressed to the Technical Editor, Professor Le
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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for magnetoelastic interactions in perfectly conducting bod
~@13#! is applied. The theory includes the effects of rotatory iner
and shear. The plate is engulfed by a uniform magnetic field
rected normal to the crack and subjected to incident waves
generate vibratory motion in the transverse direction of the pl
Fourier transforms are used to reduce the magnetoelastic c
problem to a pair of dual integral equations which can be furt
reduced to a Fredholm integral equation of the second kind~@6#!
that is amenable to numerical calculations. Dynamic moment
tensity factors are determined for different wave frequencies
amplitudes of the magnetic field.

Magnetoelastic Thin Plate Bending
We consider an electrically conducting elastic plate of thickn

2h. The coordinate axesx and y are in the middle plane of the
plate and thez-axis is perpendicular to this plane. It is assum
that the plate has the electric and magnetic permeabilities«5«0

58.85310212 F/m,k5k051.2631026 H/m, respectively, with
«0 and k0 being the free-space permeabilities. The conduct
plate is permeated by a static uniform magnetic fieldH0 . We
consider small perturbations characterized by the displacem
vector u produced in the plate. The magnetic and electric fie
may be expressed in the form

H5H01h

E501e J (1)

whereH andE are the magnetic and electric field intensity ve
tors, andh ande are the fluctuating fields and are assumed to
of the same order of magnitude as the particle displacementu.

Neglecting displacement currents compared to the conduc
currents, we have the following linearized field equations~@1#!:

curl e52k0h,t (2)

curl h5 j (3)

div h50 (4)

eo div e5re (5)

sxx,x1syx,y1szx,z1~ j3B0!x5rux,tt (6)

sxy,x1syy,y1szy,z1~ j3B0!y5ruy,tt (7)
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and
sxz,x1syz,y1szz,z1~ j3B0!z5ruz,tt (8)

where a comma denotes partial differentiation with respect to
coordinate or the timet, j is the current density,re is the free
electric charge density,B05k0H0 is the magnetic induction,r is
the mass density, (sxx ,syy ,szz,sxy5syx ,syz5szy ,szx5sxz)
are the elastic stress components, and (ux ,uy ,uz) are the compo-
nents ofu. In a moving conductor the current is determined
Ohm’s law as

j5s~e1u,t3B0! (9)

wheres is the electric conductivity. The mechanical constituti
equations are taken to be the usual Hooke’s law

sxx5l~ux,x1uy,y1uz,z!12mux,x

syy5l~ux,x1uy,y1uz,z!12muy,y

szz5l~ux,x1uy,y1uz,z!12muz,z

sxy5m~ux,y1uy,x!

syz5m~uy,z1uz,y!

sxz5m~uz,x1ux,z!

6 (10)

wherel, m are the Lame´ constants.
Outside the plate the external fields are solutions of

curl ee52k0h,t
e (11)

curl he50 (12)

div he50 (13)

div ee50 (14)

where the superscripte denotes the external value of the quant
so labeled.

If we let s→`, we get from Eq.~9!

e1k0u,t3H050. (15)

The linearized boundary conditions are also obtained as

ex
e~x,y,6h,t !2ex~x,y,6h,t !50

ey
e~x,y,6h,t !2ey~x,y,6h,t !50J (16)

hx
e~x,y,6h,t !2hx~x,y,6h,t !5 j y

s

hy
e~x,y,6h,t !2hy~x,y,6h,t !52 j x

sJ (17)
504 Õ Vol. 67, SEPTEMBER 2000
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«0$ez
e~x,y,6h,t !2ez~x,y,6h,t !%5re

s (18)

hz
e~x,y,6h,t !2hz~x,y,6h,t !50 (19)

j z~x,y,6h,t !50 (20)

szz
Me~x,y,6h,t !2$szz~x,y,6h,t !1szz

M~x,y,6h,t !%50

szy
Me~x,y,6h,t !2$szy~x,y,6h,t !1szy

M ~x,y,6h,t !%50

szx
Me~x,y,6h,t !2$szx~x,y,6h,t !1szx

M~x,y,6h,t !%50
J

(21)

where (B0x ,B0y ,B0z), (ex ,ey ,ez), and (hx ,hy ,hz) are the com-
ponents ofB0 , e, andh, respectively,j z is thez-component ofj ,
j x
s and j y

s are the components of the surface current densityj s, and
re

s is the surface charge density. The Maxwell stress compon
are

szz
M5k0H0zhz2k0H0xhx2k0H0yhy

szy
M 5k0H0yhz1k0H0zhy

szx
M5k0H0xhz1k0H0zhx

J (22)

where (H0x ,H0y ,H0z) are the components ofH0 .
We assume that the plate is permeated by a static uniform m

netic field of magnetic inductionB05k0H0 in they-direction. By
using Mindlin’s theory of plate bending~@12#!, the rectangular
displacement componentsux , uy , anduz may assume the forms

ux5zCx~x,y,t !, uy5zCy~x,y,t !, uz5Cz~x,y,t ! (23)

in which Cz represents the normal displacement of the plate,
Cx and Cy denote the rotations of the normals about thex and
y-axes.

From Eqs.~2!, ~15!, and ~23!, we obtain the magnetic field
intensity components as

hx5H0ux,y5zH0Cx,y

hy52H0~uz,z1ux,x!52
H0

12n
z$~122n!Cx,x2nCy,y%

hz5H0uz,y5H0Cz,y

6
(24)

wheren is the Poisson’s ratio. From Eqs.~3! and ~24!, we also
have
j x5hz,y2hy,z5H0FCz,yy1
1

12n
$~122n!Cx,x2nCy,y%G

j y5hx,z2hz,x5H0~Cx,y2Cz,xy!

j z5hy,x2hx,y52zH0FCx,yy1
1

12n
$~122n!Cx,xx2nCy,xy%G 6 . (25)

The Lorentz body force components per unit volume are given by

~ j3B0!x52k0H0 j z5zk0H0
2FCx,yy1

1

12n
$~122n!Cx,xx2nCy,xy%G

~ j3B0!y50

~ j3B0!z5k0H0 j x5k0H0
2FCz,yy1

1

12n
$~122n!Cx,x2nCy,y%G 6 . (26)

The bending and twisting moments per unit length (Mxx ,M yy ,Mxy5M yx) and the vertical shear forces per unit length (Qx ,Qy) can
be expressed in terms ofCx , Cy , andCz as
Transactions of the ASME
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Mxx5E
2h

h

zsxxdz5D~Cx,x1nCy,y!

M yy5E
2h

h

zsyydz5D~Cy,y1nCx,x!

Mxy5M yx5E
2h

h

zsxydz5
~12n!

2
D~Cy,x1Cx,y!

6 (27)

Qx5E
2h

h

sxzdz5
p2

6
mh~Cz,x1Cx!

Qy5E
2h

h

syzdz5
p2

6
mh~Cz,y1Cy!6 (28)

whereD54mh3/3(12n) is the flexural rigidity of the plate andm
is the shear modulus of elasticity. Now if we multiply Eqs.~6! and
~7! by z dzand integrate from2h to h, we shall obtain the results

Mxx,x1Mxy,y2Qx5
2

3
rh3Cx,tt2mxx (29)

Mxy,x1M yy,y2Qy5
2

3
rh3Cy,tt2myy . (30)

The momentsmxx andmyy are derived as

mxx5h$szx~x,y,h,t !2szx~x,y,2h,t !%1E
2h

h

z~ j3B0!xdz

myy5h$szy~x,y,h,t !2szy~x,y,2h,t !%1E
2h

h

z~ j3B0!ydz6 .

(31)

If Eq. ~8! is multiplied by dz and integrated from2h to h, we
obtain

Qx,x1Qy,y52hrCz,tt2q. (32)

The loadq applied to the plate is derived as

q5szz~x,y,h,t !2szz~x,y,2h,t !1E
2h

h

~ j3B0!zdz. (33)

Substituting Eqs.~27! and ~28! into Eqs.~29!, ~30!, and~31!, we
have the equations of motion for a Mindlin plate under the infl
ence of magnetic field

S

2
@~12n!~Cx,xx1Cx,yy!1~11n!F ,x#2Cx2Cz,x

5
4h2r

p2m
Cx,tt2

6

p2mh
mxx (34)

S

2
@~12n!~Cy,xx1Cy,yy!1~11n!F ,y#2Cy2Cz,y

5
4h2r

p2m
Cy,tt2

6

p2mh
myy (35)

Cz,xx1Cz,yy1F5
4h2r

p2m

1

R
Cz,tt2

6

p2mh
q (36)

in which

F5Cx,x1Cy,y . (37)

The rotatory inertia and transverse shear effects are assoc
with R andS as given by

R5
h2

3
, S5

6D

p2mh
. (38)
Journal of Applied Mechanics
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Problem Statement and Method of Solution
Consider a perfectly conducting Mindlin plate having a throu

crack of length 2a as shown in Fig. 1. The crack is located on t
line y50,uxu,a and the cracked plate is permeated by the m
netic field (H0y5H0 ,H0x5H0z50) of magnetic inductionB0
5k0H0 normal to the crack surface. Incident waves giving rise
moments symmetric about the crack planey50 are applied:

Cx
i 50

Cy
i 5Cy0 exp$2 i ~ky1vt !%

Cz
i 5Cz0 exp$2 i ~ky1vt !%

J (39)

where the superscripti stands for the incident componen
(Cy0 ,Cz0) are the amplitudes of the input waves,k is the wave
number, andv is the circular frequency. Substituting Eq.~39! into
Eqs.~24!, we obtain

hx
i 50

hy
i 52 ik

n

12n
H0zCy0 exp$2 i ~ky1vt !%

hz
i 52 ikH0Cz0 exp$2 i ~ky1vt !%

6 . (40)

The field Eqs.~12! and ~13! in the vacuum can be written as

hz,y
e 2hy,z

e 50

hx,z
e 2hz,x

e 50

hy,x
e 2hx,y

e 50
J (41)

hx,x
e 1hy,y

e 1hz,z
e 50. (42)

Outside the plate the external fields are solutions of Eqs.~41! and
~42!. Solutions of these equations which vanish atz56` and
have the wave factor exp$2i(ky1vt)% are

hx
ei50

hy
ei5 iA1 exp~2kz!exp$2 i ~ky1vt !% ~z>h!

52 iA2 exp~kz!exp$2 i ~ky1vt !% ~z<2h!

hz
ei5A1 exp~2kz!exp$2 i ~ky1vt !% ~z>h!

5A2 exp~kz!exp$2 i ~ky1vt !% ~z<2h!

6 (43)

whereA1 andA2 are undetermined constants.
Boundary condition~19! leads to the determination ofA1 and

A2 as

A15A252 ikH0Cz0 exp~kh!. (44)

From Eqs.~21!, the stress boundary conditions on the plate s
faces are

szz5k0H0~hy2hy
e!, szx5szy50, ~z56h!. (45)

Fig. 1 A through crack in a perfectly conducting Mindlin plate
and flexural waves
SEPTEMBER 2000, Vol. 67 Õ 505



Making use of Eqs.~40!, ~43!, ~44!, and~45! renders the stress componentsszz
i (x,y,6h,t) andszy

i (x,y,6h,t)

szz
i ~x,y,6h,t !52k0 H0hy

ei~x,y,6h,t !1k0H0hy
i ~x,y,6h,t !

5S 7k0H0
2kCz07k0H0

2
n

12n
khCy0Dexp$2 i ~ky1vt !%

szy
i ~x,y,6h,t !5szx

i ~x,y,6h,t !50
6 . (46)
d

k

e-
o be
the
be
the

the
From Eqs.~31! and ~33!, we obtain

mxx
i 50, myy

i 50

qi522k0H0
2k~11kh!Cz0 exp$2 i ~ky1vt !%

J . (47)

Substituting Eqs.~39! and ~47! into Eqs.~35! and ~36! yields

4

3
~kh!3S v

c2kD 4

2H S 8

3

1

12n
1

1

9
p2D ~kh!31

p2

3
~kh!

1
4

3
~kh!2~11kh!hcJ S v

c2kD 2

1
8

3

1

12n
~kh!2~11kh!hc

1
2p2

9

1

12n
~kh!31

p2

3
~11kh!hc50 (48)

i
p2

6
Cy05H p2

6
~kh!12~11kh!hc22~kh!S v

c2kD 2J Cz0

(49)

in which c25(m/r)1/2 is the shear wave velocity and

hc5k0H0
2/m. (50)

The effect of the magnetic field~H0y5H0 , H0x5H0z50! on the
flexural waves is discussed in Appendix A. The dependency of
flexural waves onkh for three directions of the magnetic fiel
~H0x5H0 , H0y5H0z50; H0y5H0 , H0x5H0z50; H0z5H0 ,
H0x5H0y50! is also discussed in Appendix B.

The complete solution of the waves as diffracted by the crac
obtained by adding the incident and scattered waves, i.e.,

Cx~x,y,t !5Cx
i ~x,y,t !1Cx

s~x,y,t !

Cy~x,y,t !5Cy
i ~x,y,t !1Cy

s~x,y,t !

Cz~x,y,t !5Cz
i ~x,y,t !1Cz

s~x,y,t !
J (51)
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where the superscripts stands for the scattered component. Lik
wise, the plate displacements, moments and shears can als
found by superposing the incident and scattered parts and
results are obvious. Only one quarter of the plate needs to
considered because of symmetry. For a traction-free crack,
quantitiesM yy , Mxy , Qy must each vanish forx,a and y50.
The boundary conditions for the scattered field become

Mxy
s 50 ~y50,0<x,`! (52)

Qy
s50 ~y50,0<x,`! (53)

M yy
s 52M yy

i 52 ikDCy0 exp~2 ivt ! ~y50,0<x,a!

Cy
s50 ~y50,a<x,`!

J .

(54)

In what follows, the exponential time factor exp(2iwt) will be
omitted as it always appears with the quantityikDCy0 as indi-
cated in Eq.~54!.

We assume that the solutionsCx , Cy , andCz are of the forms

Cx~x,y!5
2

p (
j 51

2 E
0

`

Aj~a!exp$2g j~a!y%sin~ax!da

Cy~x,y!5
2

p (
j 51

2 E
0

`

Bj~a!exp$2g j~a!y%cos~ax!da

Cz~x,y!5
2

p (
j 51

2 E
0

`

Cj~a!exp$2g j~a!y%cos~ax!da
6

(55)

where Aj (a), Bj (a), Cj (a), and g j (a) ( j 51,2) are the un-
known functions to be determined later. It can be shown that
solutions (hx

e ,hy
e ,hz

e) satisfying Eqs.~41! and ~42! are given by
hx
e5

2

p (
j 51

2 E
0

` a

$a22g j
2~a!%1/2 a1 j~a!exp$2g j~a!y%exp@2$a22g j

2~a!%1/2z#sin~ax!da

~z>h!

52
2

p (
j 51

2 E
0

` a

$a22g j
2~a!%1/2 a2 j~a!exp$2g j~a!y%exp@$a22g j

2~a!%1/2z#sin~ax!da

~z<2h!

6 (56)

hy
e5

2

p (
j 51

2 E
0

` g j~a!

$a22g j
2~a!%1/2 a1 j~a!exp$2g j~a!y%exp@2$a22g j

2~a!%1/2z#cos~ax!da

~z>h!

52
2

p (
j 51

2 E
0

` g j~a!

$a22g j
2~a!%1/2 a2 j~a!exp$2g j~a!y%exp@$a22g j

2~a!%1/2z#cos~ax!da

~z<2h!

6 (57)
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hz
e5

2

p (
j 51

2 E
0

`

a1 j~a!exp$2g j~a!y%exp@2$a22g j
2~a!%1/2z#cos~ax!da

~z>h!

5
2

p (
j 51

2 E
0

`

a2 j~a!exp$2g j~a!y%exp@$a22g j
2~a!%1/2z#cos~ax!da

~z<2h!

6 (58)
where the unknownsa1 j (a) anda2 j (a) ( j 51,2) are to be evalu-
ated from the boundary conditions~19! at uzu5h.

Boundary conditions~19! lead to the determination ofa1 j (a)
anda2 j (a) as

a1 j~a!5a2 j~a!52H0g j~a!Cj~a!

3exp@$a22g2~a!%1/2h# ~ j 51,2!. (59)

Making use of Eqs.~56!, ~57!, and~59! renders thex, y-magnetic
intensity componentshx

e(x,y,6h,t) andhy
e(x,y,6h,t)

hx
e~x,y,6h,t !57

2

p (
j 51

2 E
0

` H0ag j~a!

$a22g j
2~a!%1/2 Cj~a!

3exp$2g j~a!y%sin~ax!da

hy
e~x,y,6h,t !57

2

p (
j 51

2 E
0

` H0g j
2~a!

$a22g j
2~a!%1/2 Cj~a!

3exp$2g j~a!y%cos~ax!da

6 . (60)

From boundary conditions~45!, we have

szz~x,y,6h,t !52k0H0hy
e~x,y,6h,t !1k0H0hy~x,y,6h,t !

56k0H0
2F 2

p (
j 51

2 E
0

` g j
2~a!

$a22g j
2~a!%1/2 Cj~a!

3exp$2g j~a!y%cos~ax!da

2
h

12n
$~122n!Cx,x2nCy,y%G

szy~x,y,6h,t !5szx~x,y,6h,t !50

6 .

(61)

From Eq.~33!, we obtain

q52k0H0
2FhCz,yy1

2

p (
j 51

2 E
0

` g j
2~a!

$a22g j
2~a!%1/2 Cj~a!

3exp$2g j~a!y%cos~ax!daG . (62)

Substituting Eqs.~55! and ~62! into Eqs.~34!–~36!, in which we
neglect the momentsmxx ,myy , yields

a0~a!g j
4~a!1b0~a!g j

2~a!1c0~a!50 (63)

$a22g j
2~a!%Aj~a!5aGj~a!Cj~a! ~ j 51,2!

$a22g j
2~a!%Bj~a!5g j~a!Gj~a!Cj~a! ~ j 51,2!

J (64)

in which
Journal of Applied Mechanics
a0(a)511
12k0H0

2

p2mh

1

{ a22g j
2(a)} 1/2

b0(a)522a21S v

v0
D 2S 1

S
1

1

RD1
1

S

12hc

p2h

H S v

v0
D 2

21J
$a22g j

2(a)} 1/2

2
12hc

p2h

a2

$a22g j
2(a)%1/2

c0(a)5a42S v

v0
D 2S 1

S
1

1

RDa21
1

RSS v

v0
D 2H S v

v0
D 2

21J
§

(65)

Gj~a!5a22g j
2~a!2S v

v0
D 2 1

R
2

12hc

p2h
g j~a!$ i 1hg j~a!%

~ j 51,2! (66)

andv05pc2/2h is the cutoff frequency.
The boundary conditions~52! and ~53! render

(
j 51

2

Rj~a!Cj~a!50 (67)

(
j 51

2

$Pj~a!2g j~a!%Cj~a!50 (68)

in which

Rj~a!52Nj~a!g j~a!2aPj~a! ~ j 51,2!. (69)

The unknownC(a) is related toCj (a)( j 51,2) as follows:

C~a!5(
j 51

2

Pj~a!Cj~a!. (70)

Application of the boundary conditions~54! gives rise to a pair of
dual integral equations:

5 E0

`

a f ~a!C~a!cos~ax!da5
p

2

Miy

D
~0<x,a!

E
0

`

C~a!cos~ax!da50 ~a<x,`!

(71)

in which Miy and f (a) are known as

Miy52 ikDCy0 (72)

f ~a!5
1

aU~a! H V1~a!2V2~a!
S1~a!

S2~a!J (73)

U~a!5P1~a!2P2~a!
S1~a!

S2~a!
(74)

Sj~a!5Pj~a!2g j~a! ~ j 51,2! (75)

Vj~a!52Pj~a!g j~a!1naNj~a! ~ j 51,2!. (76)
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The second of Eqs.~71! would be satisfied ifC(a) is taken as

C~a!5
p

2

Miy

DF
a2E

0

1

j1/2F1~j!J0~aaj!dj (77)

whereJ0() being the first kind Bessel function of order zero, a

Fig. 2 Dynamic bending moment intensity factor
zK I ÕM0„pa…1Õ2z versus vÕv0 „aÕhÄ5…

Fig. 3 Dynamic bending moment intensity factor
zK I ÕM0„pa…1Õ2z versus vÕv0 „aÕhÄ10…

Fig. 4 Dynamic bending moment intensity factor
zK I ÕM0„pa…1Õ2z versus h c „aÕhÄ5…

Table 1 Material properties of aluminum

Material
Densityr
~kg/m3!

Electrical Conductivitys
~mho/m!

Shear Modulusm
~N/m2!

Aluminum 2700 3.543107 2.3731010
508 Õ Vol. 67, SEPTEMBER 2000
d

F5 lim
a→`

f ~a!. (78)

Inserting Eq.~77! into the first of Eqs.~71! yields a Fredholm
integral equation of the second kind:

F1~j!1E
0

1

K1~j,h!F1~h!dh5j1/2 (79)

where the kernelK1(j,h) is given by

K1~j,h!5~jh!1/2E
0

`

aF 1

F
f ~a/a!21GJ0~aj!J0~ah!da.

(80)

The moment intensity factor is defined by

KI5 lim
x→a1

$2p~x2a!%1/2M yy~x,0,t !5 ikDCy0~pa!1/2F1~1!

5M0M2~pa!1/2F1~1! (81)

in which

M05 ik1DCy0

M25k/k1

k1
25

1

2 S v

v0
D 2H 1

S
1

1

R
1F S 1

S
2

1

RD 2

1
4

RSS v0

v D 2G1/2J 6 . (82)

Keep in mind that the factor exp(2ivt) has been suppressed.

Discussion of Results
The elastodynamic plate solution~@14#! is recovered when the

magnetic field tends to zero. In the limit asv→0, the correspond-
ing static solution ofKI5M0(pa)1/2 is obtained. The considere
conductor is aluminum. The material properties are given in Ta
1. Computed are the numerical values ofF1(1) in Eq. ~79! for
n50.3. The ratioM25k/k1 in Eq. ~81! is known fromv in Eq.
~48! which can be further reduced to

a1S k

k1
D 4

1b1S k

k1
D 3

1c1S k

k1
D 2

1d1S k

k1
D1e150 (83)

in which

a15
2p2

9

h4

12n
1

8

3

1

12n
hch

4

b15
8

3

1

~12n!k1
hch

3

c15
p2

3k1
2 hch

22S 8

3

1

12n
1

p2

9
1

4

3
hcD h4

k1
2 S v

c2
D 2

d15
p2

3k1
3 hch2

4

3k1
3 hch

3S v

c2
D 2

e152
p2

3k1
4 h2S v

c2
D 2

1
4

3k1
4 h4S v

c2
D 4

§
. (84)

The normalized magnetic field ofhc50.0, 0.001, 0.002, and 0.00
corresponds, respectively, to magnetic inductionB05k0H0
50.0, 5.46, 7.73, and 9.46T.

A plot of the normalized moment intensity facto
uKI /M0(pa)1/2u is given in Fig. 2 for the ratioa/h55 and four
different values ofhc . The dashed curve obtained for the case
hc50.0 coincides with the purely elastic case. The quan
uKI /M0(pa)1/2u for hc50.0 decays as the frequency increases.
the three curves forhcÞ0.0 possess lower amplitude than that f
hc50.0, the magnetic field is seen to decrease the local mom
with increasinghc . Such an effect dies out at high frequenc
Figure 3 shows the result for the ratioa/h510. The same gross
effect is observed. The same data foruKI /M0(pa)1/2u is plotted
Transactions of the ASME
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againsthc in Figs. 4 and 5. Note thatuKI /M0(pa)1/2u approaches
unity asv/v0→0 at hc50.0 and tends to decrease with increa
ing hc .

In conclusion, the amplification of the moment intensity fac
of a through crack in a Mindlin plate subjected to a steady-s
magnetic field normal to the crack and an incident flexural wav
evaluated in this work. A perfectly conducting material is a
sumed for the plate. Significant decrease in the local mom
intensity factor occurs at wave frequencyv/v0,0.02 and the
magnetic field effect dies out gradually as the frequency is
creased. All results are based on linear magnetoelasticity as
ing a coupling between the induced current and deformation.

Fig. 5 Dynamic bending moment intensity factor
zK I ÕM0„pa…1Õ2z versus h c „aÕhÄ10…

Fig. 6 Phase velocity vÕkc 2 versus wave number kh

Fig. 7 Phase velocity vÕkc 2 versus wave number kh „perfect
conductivity …
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Appendix A
Here, the effect of the magnetic field ofH0y5H0 , H0x5H0z

50 on the flexural waves is studied. The frequency equation fo
conducting Mindlin plate with finite electric conductivity is ob
tained as

4

3
sh~kh!3S v

kc2
D 5

1 i
4

3
~kh!3~11kh!S v

kc2
D 4

2H S 8

3

1

12n
1

1

9
p2Dsh~kh!31

p2

3
sh~kh!

1
4

3
~kh!2~11kh!hcshJ S v

kc2
D 3

2 i H S 8

3

1

12n
1

1

9
p2D ~kh!31

p2

3
~kh!J ~11kh!S v

kc2
D 2

1H 8

3

1

12n
~kh!2~11kh!hcsh1

2p2

9

1

12n
sh~kh!3

1
p2

3
~11kh!hcshJ S v

kc2
D1 i

2p2

9

1

12n
~kh!3~11kh!50

(A1)

where

sh5c2hsk0 . (A2)

Figure 6 shows the variation of the phase velocityv/kc2 with
the wave numberkh for hc50.003(B059.46 T), n50.3, sh
510,1000. The dashed curve refers to the case ofhc50.0. The
effect of the magnetic field onv/kc2 is observed at low wave
number. The curve obtained for the case of a perfect conductiv
i.e., s→`, coincides with the case ofsh51000. The results
show validity of the assumption that electrical conductivity is ze
at cryogenic temperature.

Appendix B
The dependency of the flexural wave onkh for three magnetic

fields of H0x5H0 , H0y5H0z50 ~Case I!, H0y5H0 , H0x5H0z
50 ~Case II!, H0z5H0 , H0x5H0y50 ~Case III! is studied. A
perfect conductivity is assumed for the Mindlin plate.

„a… Case I „H 0xÄH 0 , H 0yÄH 0zÄ0…. From Eqs.~2!, ~15!,
~23!, and~39!, we obtain the magnetic field intensity componen
as

hx
i 52H0~uy,y

i 1uz,z
i !52zH0

1

12n
Cy,y

i

hy
i 5H0uy,x

i 50

hz
i 5H0uz,x

i 50
6 . (B1)

From Eqs.~3! and ~B1!, we also have

j x
i 5hz,y

i 2hy,z
i 50

j y
i 5hx,z

i 2hz,x
i 52H0

1

12n
Cy,y

i

j z
i 5hy,x

i 2hx,y
i 5zH0

1

12n
Cy,yy

i 6 . (B2)

The Lorentz body force components per unit volume are given

~ j3B0!x
i 50

~ j3B0!y
i 5k0H0 j z

i 5zk0H0
2

1

12n
Cy,yy

i

~ j3B0!z
i 52k0H0 j y

i 5k0H0
2

1

12n
Cy,y

i 6 . (B3)
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From Eqs.~21!, ~43!, and~B1!, the stress boundary conditions o
the plate surfaces are

szz
i 5k0H0~hx

i 2hx
ei!

52k0H0
2

1

12n
zCy,y

i

szy
i 50 ~z56h!

6 . (B4)

Making use of Eqs.~31! and~33! renders the momentsmxx
i , myy

i

and the loadqi

mxx
i 50

myy
i 5

2

3
k0H0

2
1

12n
h3Cy,yy

i

qi50
6 . (B5)

Substituting Eqs.~39! and ~B5! into Eqs.~35! and ~36! yields

4

3
~kh!2S v

kc2
D 4

2H S 8

3

1

12n
1

1

9
p21

4

3

1

12n
hcD ~kh!21

p2

3 J
3S v

kc2
D 2

1H 2p2

9

1

12n
1

p2

8

1

12n
hcJ ~kh!250, (B6)

i
p2

6
Cy052H p2

6
22S v

kc2
D 2J kCz0 . (B7)

„b… Case II „H 0yÄH 0 , H 0xÄH 0zÄ0…. From Eq. ~48!, we
also have the frequency equation for Case II~H0y5H0 , H0x
5H0z50! as

4

3
~kh!3S v

c2kD 4

2H S 8

3

1

12n
1

1

9
p2D ~kh!31

p2

3
~kh!

1
4

3
~kh!2~11kh!hcJ S v

c2kD 2

1
8

3

1

12n
~kh!2~11kh!hc

1
2p2

9

1

12n
~kh!31

p2

3
~11kh!hc50. (B8)

„c… Case III „H 0zÄH 0 , H 0xÄH 0yÄ0…. From Eqs.~2!, ~15!,
~23!, and~39!, we obtain the magnetic field intensity componen
as

hx
i 5H0ux,z

i 5H0Cx
i

hy
i 5H0uy,z

i 5H0Cy
i

hz
i 52H0~ux,x

i 1uy,y
i !52zH0Cy,y

i
J . (B9)

From Eqs.~3! and ~B9!, we also have

j x
i 5hz,y

i 2hy,z
i 52zH0Cy,yy

i

j y
i 5hx,z

i 2hz,x
i 50

j z
i 5hy,x

i 2hx,y
i 50

J . (B10)

The Lorentz body force components per unit volume are given

~ j3B0!x
i 5k0H0 j y

i 50

~ j3B0!y
i 52k0H0 j x

i 5zk0H0
2Cy,yy

i

~ j3B0!z
i 50

J . (B11)

From Eqs.~19!, ~B9!, ~39!, and~43!, the constantsA1 andA2 are
determined as
510 Õ Vol. 67, SEPTEMBER 2000
n
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A15A256 ikH0hCy0 exp~kh!. (B12)

From boundary condition~21!, we have

szz
i 50

szy
i 5k0H0~hy

ei2hy
i !52k0H0

2~kh11!Cy0
i J . (B13)

From Eqs.~31! and ~33!, we obtain

mxx
i 50

myy
i 522k0H0

2kh2Cy,y
i 1

2

3
k0H0

2h3Cy,yy
i

qi50
6 . (B14)

Substituting Eqs.~39! and ~B14! into Eqs.~35! and ~36! yields

4

3
~kh!2S v

kc2
D 4

2H S 8

3

1

12n
1

1

9
p2D ~kh!214khS 11

1

3
khDhc

1
p2

3 J S v

kc2
D 2

1
2p2

9

1

12n
~kh!21

p2

3
khS 11

1

3
khDhc50

(B15)

i
p2

6
Cy052H p2

6
22S v

kc2
D 2J kCz0 . (B16)

Figure 7 shows the variation of the phase velosityv/kc2 with
the wave numberkh for hc50.003(B059.46 T) andn50.3. The
curves obtained for thex, z-direction magnetic fields~Cases I, III!
almost coincide with the purely elastic case. The effect of
y-direction magnetic field~Case II! on flexural waves is more
pronounced than those ofx, z-direction magnetic fields~Case I,
III !.
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On the General Solutions for
Annular Problems With a Point
Heat Source
A general analytical solution for the annular problem with a point heat source is provi
in this paper. Based upon the method of analytical continuation and the techniqu
Fourier series expansions, the series solutions of the temperature and stress functio
expressed in complex explicit form. Single-valuedness of complex functions in the d
connected region has been examined for both the stress-free and displaceme
boundary conditions. The dilatation stress in the annulus due to the application of a
heat source is discussed and shown in graphic form.@S0021-8936~00!02803-8#
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1 Introduction
The boundary value problems for an annular region have

ceived considerable attention from many researchers since t
problems have applications to many different engineering st
tures such as pressure vessels, test specimens, and rollers
solution for the stresses in a pressure vessel under uniform i
nal and external pressures was first included in the book publis
by Lamè@1#. By determining the Airy’s stress function and usin
the Fourier series expansions, Michell@2# found a general solution
and gave a conclusion that the stresses in the annulus are ind
dent of the elastic constants provided that the resultant forces
the inner and outer boundaries are zero. Bowie and Freese@3#
solved the annular problem containing a radial crack by using
modified mapping collocation technique. Using a particular fo
of the Airy’s stress function, the annular problem with a disloc
tion was solved by Delale and Erdogan@4#. By treating the dislo-
cation solution as the Green’s function, the integral equation fo
crack on the annulus was established and the crack-opening
placement and stress intensity factors were obtained~@4#!. Worden
and Keer@5# derived the Green’s function for a point load or
dislocation in an annular region using analytic continuation acr
the boundaries of the annulus. In their solution, the potent
describing an equilibrated point load and a dislocation were fo
in the form of the Plemelj formulas plus an infinite series. T
convergence of the infinite series is dependent on the wall r
and their method is only appropriate for analyzing thick-wall
annuli. For problems considering thin-walled members, Ch
and Finnie @6# obtained the stress intensity factors for rad
cracks in circular cylinders and other simply closed cylindric
bodies. All the aforementioned studies consider only for isoth
mal cases. Very few solutions of the thermal stresses for the
nular problem are found in the literature. The exact analyti
solution is only found for the problem that the given temperat
distributions are prescribed on the boundaries~see@7#!.

One of the most difficult parts in solving the annular proble
with doubly connected regions is that the single-valued condi
of the displacements and the stresses must be satisfied. The
lem will become more complicated if singularities or point he
sources reside in the annulus. In this work we first determine
temperature distributions of the annular problem subject to a p
heat source and then solve for the thermal stresses. In the de

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
28, 1998; final revision, Jan. 29, 1999. Associate Technical Editor: J. R. Ba
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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tion of the thermal field the strength of a point heat source mus
properly chosen such that the condition of energy balance
tween a point heat source and the given prescribed tempera
distributions along the inner and outer boundaries is satisfi
Having the solution of the temperature field, the thermal stres
in the annular region is determined by the method based on
lytic continuation theorem in conjunction with Laurent series e
pansions. The undetermined coefficients appearing in the se
solution are solved using the Fourier series expansions. Both
stress-free and displacement-free conditions are considered e
on the inner boundary or on the outer boundary. In the pres
analysis we exclude the case of the displacement-free cond
considered on the inner and outer boundaries of the annu
However, the method is easily extended to solve
displacement-free boundary for which the resultant force over
annular region is not zero which must be determined after
solution is obtained. The solution derived in the present prob
with a point heat source can be used as a Green’s function w
allows us to derive the solution for the problem with distribut
sources that is frequently encountered in practical application

2 Formulation of the Annular Problem

2.1 Basic Equations. For two-dimensional thermoelasti
problems the resultant force and displacements can be expre
in terms of two stress potentialsf(z),c(z) and a single tempera
ture potentialg8(z) as ~@8#!

2Y1 iX5f~z!1zf8~z!1c~z! (1)

2m~u1 iv !5kf~z!2zf8~z!2c~z!12mbE g8~z!dz (2)

where2Y1 iX is the resultant force over an arc of the bounda
measured from some fixed point,u andv are the displacements in
thex-y plane,k5324n, b5~11n!a for plane strain andk532n/
11n, b5a for plane stress witha being thermal expansion coef
ficient andn the Poisson’s ratio,m is the shear modulus,z is the
complex coordinate:z5x1 iy , and the bars denote complex co
jugation. The components of stress in polar coordinate system

s rr 1suu52@f8~z!1f8~z!# (3)

s rr 1 i t ru5f8~z!1f8~z!2Fzf9~z!1
z̄

z
c8~z!G . (4)

2.2 Determination of Steady-State Temperature Distribu-
tions. Consider a circular annulus with inner radiusa and outer
radiusb which is subjected to a point heat source with the stren
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ber.
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q0 located at the pointz5z05r 0eiu0 ~see Fig. 1!. For steady-state
heat conduction problem the temperature potentialg8(z) can be
written as

g8~z!5Q0 ln~z2z0!1 (
n52`

`

lnzn (5)

whereQ052q0/2pk with k being heat conductivity andln are
the unknown coefficients which will be determined as the therm
boundary condition is imposed. In the present analysis, the t
peratures at the inner and outer boundaries of the annulus
denoted byT1(u) andT2(u), respectively, i.e.,

T5
1

2
@g8~ t !1g8~ t !#5T1~u!

5 (
m50

`

~Am cosmu1Bm sinmu! on t5aeiu (6)

T5
1

2
@g8~ t !1g8~ t !#5T2~u!

5 (
m50

`

~Am8 cosmu1Bm8 sinmu! on t5beiu. (7)

On substituting~5! into ~6! and~7! and applying the techniques o
Fourier series we find

l05A02
Q0

4p E
0

2p

ln@a21r 0
222ar0 cos~u2u0!#du (8)

ln5
1

2p~b2n2a2n! E0

2p

$2~bnT22anT1!

2Q0@bn ln~b21r 0
222br0 cos~u2u0!!

2an ln~a21r 0
222ar0 cos~u2u0!!#%e2 inudu ~nÞ0!

(9)

and for consistency we require

A085A02
Q0

4p E
0

2p

@ ln~a21r 0
222ar0 cos~u2u0!!

2 ln~b21r 0
222br0 cos~u2u0!!#du. (10)

It should be emphasized that the strength of a point heat so
must be chosen to satisfy~10! such that the condition of energ
balance between a point source and the temperatures prescrib

Fig. 1 Problem configuration for the annulus
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the inner and outer boundaries of the annulus is ensured within
context of steady state heat conduction theory~@9#!. Mathemati-
cally, the difference betweenA08 andA0 in ~10!, which accounts
for the net heat flow from outside to inside the annulus, must
equal to the integral term which accounts for the heat genera
due to the presence of a point heat source. For the problem
the absence of a point heat source, the temperature potential i~5!
is replaced by

g8~z!5l* ln z1 (
n52`

`

lnzn (11)

where the unknown coefficientsl* andln can be obtained from
~8!–~10! by puttingQ05l* and r 050 as

l* 5
A082A0

ln b2 ln a
, l05

A0 ln b2A08 ln a

ln b2 ln a
(12)

and

ln5
~bnAn82anAn!2 i ~bnBn82anBn!

b2n2a2n ~nÞ0! (13)

l2n5
~b2nAn82a2nAn!2 i ~b2nBn82a2nBn!

b22n2a22n ~nÞ0!.

(14)

Upon integration of~5! and ~11!, the temperature functions be
come

g~z!5Q0@~z2z0!~ ln~z2z0!21!#1l21 ln z1g* ~z! (15)

and

g~z!5l* z~ ln z21!1l21 ln z1g* ~z!, (16)

respectively, where

g* ~z!5 (
n52`
nÞ21

`
ln

n11
zn11 (17)

is analytic and single-valued everywhere in the annulus.

3 Thermal Stresses in the Annulus
For the annular problem with a point heat source the str

functions can be written as~@10#!

f~z!5Az ln z1B ln z1f* ~z! (18)

c~z!5C ln z1c* ~z! (19)

whereA is real constant andB, C are complex constants which ar
related by the following equations~@10#!:

~k11!Az1kB1C̄5
22mb

2p i
@g~z!#c (20)

B2C̄5
@2Y1 iX#c

2p i
(21)

where@ f (z)#c5 f (r ,u12p)2 f (r ,u) which denotes the jump o
the functionf (z) when enclosing the contourc within the annu-
lus.

Note that the singularity of the termz ln z appearing in~18!
results from the logarithmic singularity of the temperature fun
tion induced by a point heat source. The two holomorphic fu
tions f* (z),c* (z) in ~18! and ~19!, respectively, can be ex
pressed in a series form as

f* ~z!5 (
n52`

`

Lnzn, c* ~z!5 (
n52`

`

Mnzn (22)
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where the constant coefficientsLn andMn may be determined a
the stress or displacement boundary condition is imposed.
boundary condition on the inner and outer boundaries of the
nulus can be expressed, respectively, as

g1f~ t !1tf8~ t !1c~ t !1d1g~ t !5 f 1~ t ! on t5aeiu (23)

g2f~ t !1tf8~ t !1c~ t !1d2g~ t !5 f 2~ t ! on t5beiu (24)

where g15g251, d15d250, f 1(t)5 f 2(t)5R(t) for the stress
boundary value problem withR(t) being a known resultant force
on the inner and outer boundaries of the annulus whileg15g2
52k, d15d2522mb, f 1(t)5 f 2(t)522mbD(t) for the dis-
placement boundary value problem withD(t) being a single-
valued displacement function. Since the case of the displacem
free condition on both the inner and outer boundaries of
annulus is excluded from our analysis, the resultant force over
entire system becomes zero and the unknown coefficientsA, B,
andC appearing in~18! and ~19! can be obtained by substitutin
~15! and ~16! into ~20! and ~21! as

A5
22mbQ0

11k
, B5C̄5

22mB~l212Q0z0!

11k
,

for uz0u,z,b (25)

A5
22mbR0

11k
, B5C̄5

22mbl21

11k
, for a,z,uz0u

(26)

whereQ052q0/2pk, R050 for the problem with a point hea
source andQ05R05l* , z050 for the problem with the absenc
of a point heat source. Substitution of~15!, ~16!, ~18!, and ~19!
into ~23! and ~24! results in

g1f* ~ t !1tf* 8~ t !1c* ~ t !1d1g* ~ t !5F1~ t ! on t5aeiu

(27)

g2f* ~ t !1tf* 8~ t !1c* ~ t !1d2g* ~ t !5F2~ t ! on t5beiu

(28)

where

F1~ t !5 f 1~ t !1g1S 2mbR0

11k
t ln t1

2mbl21

11k
ln t D

1
2mbR0

11k
t~11 ln t̄ !1

2mbl21

11k

t

t̄
1

2mbl21

11k
ln t̄

2d1Q0~~ t2z0!ln~ t2z0!!2d1l21 ln t1d1Q0~ t2z0!

(29)

and

F2~ t !5 f 2~ t !1g2S 2mbQ0

11k
t ln t1

2mb~l212Q0z0!

11k
ln t D

1t
2mbQ0

11k
~11 ln t̄ !1

2mb~l212Q0z0!

11k

t

t̄

1
2mb~l212Q0z0!

11k
ln t̄ 2d2Q0~~ t2z0!ln~ t2z0!!

2d2l21 ln t1d2Q0~ t2z0!. (30)

3.1 Single-Valuedness of Complex Functions.Before
solving the boundary value problem~27! and ~28!, we must ex-
amine whetherF1(t) andF2(t) are single-valued functions on th
inner boundary or on the outer boundary. In the following disc
sions,c1 pertains to the inner boundary whilec2 pertains to the
outer boundary.
Journal of Applied Mechanics
The
an-

ent-
the
the

s-

(1) Stress-Free Boundary Condition(g15g251,d15d250)

@F1~ t !#c1
5@ f 1~ t !#c1

1
2mbR0

11k
@ t ln t#c1

1
2mbl21

11k
@ ln t#c1

1
2mbR0

11k
@ t~11 ln t̄ !#c1

1
2mbl21

11k F t

t̄
G

c1

1
2mbl21

11k
@ ln t̄ #c1

on t5aeiu (31)

where f 1(t) represents the resultant force on the inner bound
c1 which is a single-valued function and@ f 1(t)#c1

50. Sincec1 is
the internal boundary of the doubly connected region and
described in a clockwise manner,@ ln t#c1

522pi,@ln t̄#c1
52pi

and knowing that@ t/ t̄ #c1
50, soF1(t) is a single-valued function

on c1

@F2~ t !#c2
5@ f 2~ t !#c2

1
2mbQ0

11k
@ t ln t#c2

1
2mb~l212Q0z0!

11k
@ ln t#c2

1
2mbQ0

11k
@ t~11 ln t̄ !#c2

1
2mb~l212Q0z0!

11k F t

t̄
G

c2

1
2mb~l212Q0z0!

11k
@ ln t̄ #c2

on t5beiu (32)

where f 2(t) is a known function and single-valued onc2 . Since
c2 is the outer boundary of the doubly connected region which
described in counterclockwise sense,@ ln t#c2

52pi,@ln t̄#c2
522pi

and knowing that@ t/ t̄ #c2
50, so we have@F2(t)#c2

50.

(2) Displacement-Free Boundary Condition(g15g252k,
d15d2522mb)

@F1~ t !#c1
5@ f 1~ t !#c1

2kS 2mbR0

11k
@ t ln t#c1

1
2mbl21

11k
@ ln t#c1D

1
2mbR0

11k
@ t~11 ln t̄ !#c1

1
2mbl21

11k F t

t̄
G

c1

1
2mbl21

11k
@ ln t̄ #c1

12mbQ0@~ t2z0!ln~ t2z0!#c1

22mbQ0@~ t2z0!#c1
12mbl21@ ln t#c1

on t5aeiu

(33)

where f 1(t) represents the given displacement function which
single-valued onc1 . As c1 is described in a clockwise sens
and knowing thatz0 is located outside the contourc1 andR050
for a point heat source considered, we obtain@ ln(t2z0)#c1

50,

@ ln t#c1
522pi, and@ ln t̄#c1

52pi, so we have@F1(t)#c1
50. As the

problem with the absence of a point heat source, we obtainR0

5Q0 , z050 and knowing that@ t ln t#c1
522pit, @ t ln t̄#c1

52pit,
so we also have@F1(t)#c1

50.
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@F2~ t !#c2
5@ f 2~ t !#c2

2kS 2mbQ0

11k
@ t ln t#c2

1
2mb~l212Q0z0!

11k
@ ln t#c2D 1

2mbQ0

11k
@ t~11 ln t̄ !#c2

1
2mb~l212Q0z0!

11k F t

t̄
G

c2

1
2mb~l212Q0z0!

11k
@ ln t̄ #c2

12mb~Q0@~ t2z0!ln~ t2z0!#c2
2Q0@~ t2z0!#c2

1l21@ ln t#c2
! on t5beiu (34)
-
nt
where f 2(t) is a known function and is a single-valued functio
on c2 . As c2 is described in a counterclockwise sense and kno
ing that z0 is located inside the contourc2 , we obtain @ ln(t
2z0)#c2

52pi,@ln t#c2
52pi,@ln t̄#c2

522pi, so we have@F2(t)#c2

50. For the problem with the absence of a point heat source
obtain z050 and knowing that@ t ln t#c2

52pit, @ t ln t̄#c2
522pit;

so we also have@F2(t)#c2
50.

On comparing~31!–~34! it is clear that both the stress an
displacement boundary value problems may be solved by ex
ining the Eqs.~27! and ~28! for which f* (z), c* (z) are single-
valued holomorphic functions and the single-valued functio
F1(t) andF2(t) are interpreted according to~31!–~34!.

3.2 Compatibility Identity. Consider the annular regiona
,uzu,b by S and the annulia2b21,uzu,a, b,uzu,b2a21 by
S2 andS1, respectively~see Fig. 2!. If we use the continuation
across each boundary,f* (z) can be extended fromS into the
annuli S2,S1 by the definitions~@11#!

f* ~z!52
1

g1
H zf* 8S a2

z̄ D1c* S a2

z̄ D1d1g* ~z!J for zPS2

(35)

f* ~z!52
1

g2
H zf* 8S b2

z̄ D1c* S b2

z̄ D1d2g* ~z!J for zPS1.

(36)

f* (z) is thus holomorphic in the three regionsS2, S, S1. Notice
that g* (z) is also holomorphic and single-valued inS2 and S1

because there is no singularity or point heat source located in
regionS2 andS1. If we invert these continuations we find

c* ~z!52g1f* S a2

z̄ D2
a2

z
f* 8~z!2d1g* S a2

z̄ D for zPS

(37)

Fig. 2 Analytic regions of the annulus
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c* ~z!52g2f* S b2

z̄ D2
b2

z
f* 8~z!2d2g* S b2

z̄ D for zPS

(38)

and hencef* (z) must satisfy the compatibility identity

g2f* S b2

z̄ D2g1f* S a2

z̄ D1
b22a2

z
f* 8~z!

1d2g* S b2

z̄ D2d1g* S a2

z̄ D50 for zPS. (39)

On substituting~35! and~36! into the boundary conditions~27!
and ~28! we obtain the following Hilbert problems:

f* ~ t !2f*
2
~ t !5

1

g1
@F1~ t !2d1~g* ~ t !2g*

2
~ t !!# on t5aeiu

(40)

f* ~ t !2f*
1
~ t !5

1

g2
@F2~ t !2d2~g* ~ t !2g*

1
~ t !!# on t5beiu

(41)

where f*
1
(z) and f*

2
(z) ~or g*

1
(z) and g* (z)! denote the

limits on uzu5b and uzu5a of f* (z) ~or g* (z)! in S1 and S2,
respectively. Sincef* (z) andg* (z) are holomorphic and single
valued inS2, S, andS1, they may be represented by the Laure
series

f* ~z!55
5 (

n52`

`

Ln
2zn ~zPS2!

5 (
n52`

`

Lnzn ~zPS!

5 (
n52`

`

Ln
1zn ~zPS1!

(42)

g* ~z!55
5 (

n52`
nÞ21

`
ln

2

n11
zn11

~zPS2!

5 (
n52`
nÞ21

`
ln

n11
zn11

~zPS!

5 (
n52`
nÞ21

`
ln

1

n11
zn11

~zPS1!.

(43)

Hence the boundary conditions~40! and ~41! take the form

an~Ln2Ln
2!5

1

2pg1
E

0

2p

F1~aeiu!e2 inudu

2
d1

g1

an~ln212ln21
2 !

n
~nÞ0! (44)
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bn~Ln2Ln
1!5

1

2pg2
E

0

2p

F2~beiu!e2 inudu

2
d2

g2

bn~ln212ln21
1 !

n
~nÞ0! (45)

and substituting in the compatibility identity~39! we obtain

g2b2nLn
12g1a2nLn

21~b22a2!~22n!L22n

1d2b2n
ln21

1

n
2d1a2n

ln21
2

n
50 ~nÞ0!. (46)

On eliminating the coefficientsLn
1 and Ln

2 from ~44!–~46!, the
constantsLn andln21 satisfy the system of equations

~g2b2n2g1a2n!Ln1~b22a2!~22n!L22n

1~d2b2n2d1a2n!
ln21

n

5
1

2p E
0

2p

~bnF2~beiu!2anF1~aeiu!!e2 inudu ~nÞ0!.

(47)

Similar to the previous approach, the coefficientMn associated
with the stress functionc* (z) can be found from~37! or ~38!
which satisfy the system of equations

~g2b22~n11!2g1a22~n11!!L2n1~b222a22!Mn

2~d2b22~n11!2d1a22~n11!!
l2~n11!

n

5
1

2p E
0

2p

@b2~n12!F2~beiu!

2a2~n12!F1~aeiu!#e2 inudu ~nÞ0!. (48)

Once we obtain the coefficientsLn andMn ~see the Appendix!,
the stress functionsf* (z) andc* (z) are completely solved and
the components of stress can be determined by substituting~18!
and~19! into ~3! and~4!. Since no analytical solutions for annula
problem with a point heat source are available in the literatu
only special cases with the absence of a point heat source
considered here for demonstrating the use of the present appr
We first consider the case that the inner and outer boundarie
the annulus are kept at constant temperature, i.e.,T15A0 on uzu
5a andT25A08 on uzu5b and from~12!–~14! and~29!–~30! we
have

l* 5
A082A0

ln b2 ln a
, l05

A0 ln b2A08 ln a

ln b2 ln a
, l150, l2150

A5
22mbl*

11k
5

22mb~A082A0!

~11k!~ ln b2 ln a!
, B5C̄5

22mbl21

11k
50

(49)

F1~ t !5F2~ t !5
2mbl*

11k
@ t ln t1t1t ln t̄ #.

On substituting the above equations into~A3! and~A5! we obtain

L15
1

2 F2A~a2 ln a2b2 ln b!

~b22a2!
2AG , Ln50 ~nÞ1!

(50)

M 215
2A~a2 ln a2b2 ln b!

~b222a22!
, Mn50 ~nÞ21!

and the components of stress become
Journal of Applied Mechanics
r
re,
are
ach.
s of

s rr 5
2mb

11k

A082A0

ln b2 ln a F2 ln
b

r
2

a2~r 22b2!

r 2~b22a2!
ln

b

aG
(51)

suu5
2mb

11k

A082A0

ln b2 ln a F12 ln
b

r
2

a2~r 21b2!

r 2~b22a2!
ln

b

aG
which are in accordance with the results given by Timoshen
and Goodier@7#. Next we consider the case that the inner a
outer boundaries of the annulus are subjected to angled temp
ture distributions, i.e.,T15A1 cosu on uzu5a and T25A18 cosu
on uzu5b and from~8!–~10! and ~29!–~30! we have

l* 50, l050, l15
bA182aA1

b22a2 , l215
a2b2

a22b2 S A18

b
2

A1

a D
A5

22mbl*

11k
50,

(52)

B5C̄5
22mbl21

11k
5

22mb

11k

a2b2

a22b2 S A18

b
2

A1

a D
F1~ t !5F2~ t !5

2mbl21

11k F ln t1
t

t̄
1 ln t̄ G .

On substituting the above equations into~A3! and~A5! we obtain

L25
2B̄

~a21b2!
, Ln50 ~nÞ2!

(53)

M 225
2a2b2B

a21b2 , Mn50 ~nÞ22!

and the components of stress are

s rr 5prS 12
a2

r 2 D S b2

r 221D cosu

suu5prS a2b2

r 4 1
a21b2

r 2 23D cosu (54)

t ru5prS 12
a2

r 2 D S b2

r 221D sinu

where

p5
aE

2~12n!

a2b2

b42a4 S A1

a
2

A18

b D
which are exactly the same as those given by Timoshenko
Goodier@7# for a plane-strain condition.

4 Results and Discussion
For steady-state heat conduction problems the strengthq0 can-

not be arbitrarily chosen once the temperatureT1 at the inner
boundary and the temperatureT2 at the outer boundary are as
sumed as known values. The effect of changing the ratioT2 /T1
and the wall thicknessb/a on the dimensionless strengthq0a/T0k
~with the caser 05(a1b)/2, u050 deg! can be evaluated from
~10! and shown graphically in Fig. 3. For convenience of t
calculation in~10!, we assume the temperatureT1 andT2 are kept
at constant, i.e.,A05T1 , A085T2 from ~6! and ~7!. OnceA0 and
A08 are given, the dimensionless strengthq0a/T0k can be deter-
mined from~10! for different wall thicknessb/a. The result indi-
cates that the strength of a point heat source becomes a po
~or negative! value as the temperature at the outer boundary
lower ~or higher! than that at the inner boundary. It is then unde
stood that the conditionT2,T1 ~or T2.T1! will accompany with
the presence of a heat source~or sink! such that the energy bal
ance within the annular system is preserved. Furthermore,
strengthq0 changes dramatically with the ratioT2 /T1 for the
annulus with a relatively thin wall. The dilatation stresss rr
SEPTEMBER 2000, Vol. 67 Õ 515
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1suu , which is mainly responsible for the result of material fa
ure by fracture, is found for three different cases of bound
value problems as displayed in Figs. 4–6. The conditionsT2 /T1
53, b/a52, r 0 /a51.5 andu050 deg are considered for all thre
cases and the results shown in Figs. 4–6 are based on the s
solutions up to the first 20 terms in Eq.~22! which are checked to
preserve a good accuracy. It is shown that the maximum dilata
stress always occurs atu05180 deg, which is farthest away from
the position where a heat sink resides, for all three cases. Fo
traction-free boundary condition at both inner and outer bou
aries of the annulus, the maximum dilatation stress occurs a
inner boundary with the lower temperature as shown in Fig. 4.
the displacement-free condition~or the traction-free condition! at
the inner boundary and traction-free condition~or displacement-

Fig. 3 Relationship between the strength of a point heat
source and the temperatures at the boundaries of the annulus

Fig. 4 Dilatation stress in the annulus for the stress-free
boundary condition at the inner and outer boundaries
516 Õ Vol. 67, SEPTEMBER 2000
l-
ry

e
eries

tion

the
d-
the
or

free condition! at the outer boundary, the maximum dilatatio
stress is found to take place at the inner boundary~or outer bound-
ary! as displayed in Fig. 5~or Fig. 6!.

5 Concluding Remarks
In this work we have derived the solutions of the temperat

and thermal stresses for an annular region subject to a point
source. By properly expressing the discrete solutions in term
explicit functions, the obtained results can be treated as Gre
functions which enable us to formulate an integral equation fo
crack on the annulus. Since the series solutions derived in
work converge very fast for any wall ratioa/b, the present
method is appropriate for analyzing both thin-walled and thic

Fig. 5 Dilatation stress in the annulus for the displacement-
free and stress-free boundary conditions at the inner and outer
boundaries, respectively

Fig. 6 Dilatation stress in the annulus for the stress-free and
displacement-free boundary conditions at the inner and outer
boundaries, respectively
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walled annuli. In the future study, we will consider the transie
behavior of the annular problem in which the consistency con
tion ~10! will not be used.
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Appendix
Equation~47! can be replaced by

~g2b2n2g1a2n!Ln1~b22a2!~22n!L22n

1~d2b2n2d1a2n!
ln21

n
5Cn (A1)

or

~g2b2~22n!2g1a2~22n!!L22n1~b22a2!nLn

1~d2b2~22n!2d1a2~22n!!
l12n

22n
5C22n. (A2)
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On eliminating the coefficientsL22n the coefficientsLn satisfy

Ln5H ~g2b2~22n!2g1a2~22n!!Cn1~n22!~b22a2!C22n

1~b22a2!~d2b2~22n!2d1a2~22n!!l12n2~g2b2~22n!

2g1a2~22n!!~d2b2n2d1a2n!
ln21

n J Y $~g2b2n2g1a2n!

3~g2b2~22n!2g1a2~22n!!1n~n22!~b22a2!2% ~nÞ0!.

(A3)

Similarly, Eq. ~48! can be replaced by

~g2b22~n11!2g1a22~n11!!L2n1~b222a22!Mn

2~d2b22~n11!2d1a22~n11!!
l2~n11!

n
5Dn ~nÞ0!.

(A4)

On substituting~A3! into ~A4! we find
Mn5
1

~b222a22!
H ~g1a22~n11!2g2b22~n11!!F ~g2b2~n12!2g1a2~n12!!C2n2~n12!~b22a2!Cn12

1~b22a2!~d2b2~n12!2d1a2~n12!!ln111~g2b2~n12!2g1a2~n12!!~d2b22n2d1a22n!
l2~n11!

n
GY @~g2b22n2g1a22n!

3~g2b2~n12!2g1a2~n12!!1n~n12!~b22a2!2#2~d1a22~n11!2d2b22~n11!!
l2~n11!

n
1DnJ ~nÞ0! (A5)

where the constantsCn andDn appearing in~A1!–~A5! are

Cn5
1

2p E
0

2p

~bnF2~beiu!2anF1~aeiu!!e2 inudu

5
1

2p E
0

2p

$~bnf 2~beiu!2anf 1~aeiu!!1~g1B1C̄1d2l21!an ln a2~g2B1C̄1d2l21!bn ln b

1@~g1A ln a1Ā~11 ln a!!an112~g2A ln b1Ā~11 ln b!!bn11#eiu1B̄~an2bn!ei2u

1q0@d2~beiu2r 0eiu0!@ ln~beiu2r 0eiu0!21#bn2d1~aeiu2r 0eiu0!@ ln~aeiu2r 0eiu0!21#an#

1 iu@$~g1A2Ā1d1q0!an112~g2A2Ā1d2q0!bn11%eiu1~g1B2C̄1d1l21!an2~g2B1C̄1d2l21!bn#%e2 inudu (A6)

Dn5
1

2p E
0

2p

~b2~n12!F2~beiu!2a2~n12!F1~aeiu!!e2 inudu

5
1

2p E
0

2p

$~b2~n12! f 2~beiu!2a2~n12! f 1~aeiu!!1~g1B̄1C1d1l21!a2~n12! ln a2~g2B̄1C1d2l21!b2~n12! ln b

1@~g1Ā ln a1A~11 ln a!!a2~n11!2~g2Ā ln b1A~11 ln b!!b2~n11!#e2 iu

1q0@d2~be2 iu2r 0e2 iu0!@ ln~be2 iu2r 0e2 iu0!21#b2~n12!2d1~ae2 iu2r 0e2 iu0!@ ln~ae2 iu2r 0e2 iu0!21#a2~n12!#

1B~an2bn!e2 i2u1 iu@$~g2Ā2A!b2~n11!2~g1Ā2A!a2~n11!%e2 iu1~g2B̄2C1d2l21!b2~n12!

2~g1B̄1C1d1l21!a2~n12!#%e2 inudu, (A7)
the

the
respectively. It is interesting to see that, for the stress bound
value problem withg15g251, d15d250, the constantsLn and
Mn are only dependent on the coefficientsl* and l21 or
the coefficientsA0 , A08 , B0 , B08 , A1 , A18 , B1 , and B18 . This
arygives the conclusion that the temperature distribution along
boundary with the terms in cos 2u, sin 2u, and higher harmonic in
the temperature series do not produce any thermal stress in
annulus.
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On the Characterization of
Dynamic Properties of Random
Processes by Spectral
Parameters
This paper deals with the general problem of directly relating the distribution of range
wide band random processes to the power spectral density (PSD) by means of c
form expressions. Various attempts to relate the statistical distribution of ranges to
PSD by means of the irregularity factor or similar parameters have been done by se
authors but, unfortunately, they have not been fully successful. In the present
introducing the so-called analytic processes, the reasons for which these paramete
insufficient to an unambiguous determination of the range distribution and the fact
parameters regarding the time-derivative processes are needed have been exp
Furthermore, numerical simulations have shown that the range distributions depen
the irregularity factor and bandwidth parameter of both the process and its deriva
These observations are the basis for the determination of accurate relationships be
range distributions and PSDs.@S0021-8936~00!02903-2#
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1 Introduction
In a random process the way in which the maxima and

minima of a signal follow one another strongly depends on
distribution of its energy over frequency. This characteristic
terminates the statistic distribution of localextrema~peaks and
valley! andranges~difference between a peak and the consecu
valley!. These latter are of great interest in fatigue design,
fatigue damage is mainly related to the stress ranges, an
oceanography where ranges correspond to the heights of wav
the ocean.

The statistic distributions of the extrema has been theoretic
addressed~@1,2#! for both narrow-band processes~in which two
generic consecutive extrema are almost symmetrically placed
respect to the mean level! and wide-band processes~in which
consecutive peaks and valleys can occur without mean l
crossing! and involve only theirregularity factor a ~@1–5#!. Con-
cerning the statistic distribution of the ranges, only the case
narrow-band processes has been theoretically solved. In this
ticular case, in fact, the range distribution coincides with that
the extreme one. In the case of wide-band processes, instea
attempts to relate the statistical distribution of ranges to the po
spectral density~PSD! by means of the irregularity factor~@6–12#!
or similar spectral parameters~@13#! have not been fully
successful.

In this paper introducing the so-called analytic processes,
time domain interpretation of the irregularity factor and the ba
width parameter is first given. Then, considering the behavio
analytic processes and their derivatives in the complex plane
reasons for which the irregularity factora and the bandwidth pa
rameterq ~@14#! are insufficient to give a full probabilistic descrip
tion of the ranges distribution in a random process are explain
Further considerations on the analytic processes show that a
gous parameters relative to the derivative of the process mus

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
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Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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introduced in order to obtain the statistical distribution of t
ranges. As a confirmation, proper numerical simulations h
shown that processes having equal both the spectral paramete
the process can have different range distributions, whereas
cesses also having the spectral parameters of the time deriv
have equal range distributions.

A practical example shows that, although a general closed-f
relationship between PSD and range distribution requires fur
research work, this information can be used at present to ob
useful results in particular cases.

2 Preliminary Concepts and Definitions
In this section some well-known concepts on analytic proces

and spectral parameters are briefly outlined for clarity sake’s
well as to introduce appropriate symbologies.

2.1 Analytic Processes. Let Y(t) be a stationary zero mea
random process and letX(t) be a complex random process su
that its real part isY(t) whereas its imaginary part is the Hilbe
transform ofY(t), that is

X~ t !5Y~ t !1 iŶ~ t ! (1)

wherei is the imaginary unit and the accentˆ means the Hilbert
transform

Ŷ~ t !5
1

p E
2`

` Y~ t !

t2t
dt. (2)

The random processX(t) is called the analytic process~@15#! and
owns some important characteristics. It is well known that
autocorrelation functionRX(t) of X(t) is related to the autocorre
lation function ofY(t) and Ŷ(t) by means of the following rela-
tionship:

RX~t!5RY~t!1 iR̂Y~t! (3)

and the one-sided power spectral density~PSD! of the complex
processX(t), denoted asSX(v), is related to the two-sided PSD
of the real processY(t), denoted asSY(v), by means of

SX~v!52U~v!SY~v! (4)
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Fig. 1 Power spectral density „PSD… functions SX1
and SX2

„a… and corresponding sample functions y 1„t …,
y 2„t …, A X1

and A X2
„b….
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ters,
U(v) being the unit step function~U(v)51;v>0; U(v)
50;v,0!.

The analytic processX(t) can be seen as a vector rotating in t
complex plane defined as

X~ t !5AX~ t !exp@ iQX~ t !# (5)

where AX(t) is the so-called amplitude andQX(t) is the phase
angle respectively defined as

AX~ t !5AY2~ t !1Ŷ2~ t ! (6a)

QX~ t !5tan21F Ŷ~ t !

Y~ t !
G . (6b)

2.2 Spectral Parameters. The statistic distribution of
ranges is a feature of great practical significance, especiall
oceanography and in fatigue analysis. In a signal a range is
fined as the difference in magnitude between a peak~local maxi-
mum! and the consecutive valley~local minimum! or, vice versa,
between a valley and the consecutive peak~see particular in Fig.
1~b!!. As previously stated, in a random process, the way in wh
maxima and minima of a signal follows one another depends
the distribution of the energy over frequency, i.e., on theband-
width. Narrow-band processes are characterized by the fact
two generic consecutive peaks and valleys are almost symm
cally placed with respect to the mean level, while in wide-ba
processes consecutive peaks and valleys can occur without m
level crossing~Fig. 1~b!!. The ratio between the mean number
l. 67, SEPTEMBER 2000
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zero crossing and the mean of extrema is called theirregularity
factor aX ~@3#!. The statistic distributions of peaks are well know
~@2#! and involve only theaX parameter, while the conditiona
distribution function of consecutive peaks and valleys is n
known. For these reasons the statistic distribution of the ran
can be theoretically obtained only in the case of narrow-ba
processes as it coincides with that of the peaks.

Some spectral properties of stochastic processes can be
lighted by using thespectral moments~@4,5,14#! defined as

l j52E
0

`

v jSY~v!dv5E
0

`

v jSX~v!dv ~ j 51,2 . . .!. (7)

It has been shown that the spectral moments can be define
the time domain as the covariance of the analytic processX(t) and
its time derivatives by means of the following relationshi
~@16,17#!:

l2n5EFdnX~ t !

dtn
dnX* ~ t !

dtn G (8a)

il2n115EFdn21X~ t !

dtn21

dnX* ~ t !

dtn G (8b)

whereE@•# means stochastic average and the star means com
conjugate.

By means of the spectral moments several spectral parame
as the distanceVX of the centroid of the one-sided PSD from
Fig. 2 Sample functions of the processes Q̇X1
,Q̇X2

,Ȧ X1
ÕA X1

coincident with
Ȧ X2

ÕA X2
„a… and Q̇ Ẋ1

and Q̇ Ẋ2
„b…
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frequency origin, the radius of gyrationrX of the PSD about the
frequency origin, and the radius of gyrationr̄X of the PSD about
its central frequency can be defined~@14,18–20#!:

VX5
l1

l0
(9a)

rX5Al2

l0
(9b)

r̄X5ArX
22VX

25Al2

l0
2S l1

l0
D 2

. (10)

It is important to note that, considering Eqs.~7!, the spectral
moments of the analytic processX(t) coincide with those of its
real partY(t) and, consequently, the spectral parameters ofX(t)
coincide with those ofY(t). This means that the introduction o
the imaginary part in analytic processes does not introduce
complication in the numerical evaluation of the spectral para
eters whereas, as it will be shown in the following sections
allows a more complete interpretation of their physical and ma
ematical meanings.

The bandwidth of a given process has been defined by mea
two quantities, the previously introducedirregularity factor aX
and thespectral parameter qX introduced by Vanmarcke@14#. It
has been shown thataX ~@4#! is defined as

aX5
l2

Al0l4

0<aX<1. (11)

It approaches one for narrow-band processes and decrease
proaching zero, when the bandwidth increases.

The spectral parameterqX is defined as follows:

qX5
r̄X

rX
5A12

l1
2

l0l2
; 0<qX<1. (12)

Unlike the irregularity factor,qX approaches zero for narrow-ban
processes and increases, approaching one, when the band
increases.

3 Further Properties of Analytic Processes
In the previous section the spectral parameters have been i

duced in the frequency domain. In this section they will be rev
ited in the time domain taking into account the properties of
analytic processes and using the definitions given in Eqs.~8!.

3.1 Time-Domain Properties of Analytic Processes. The
time derivatives of the analytic processX(t) defined in Eq.~1! are
also analytic processes:

dn

dtn
X~ t !5

dn

dtn
Y~ t !1 i

dn

dtn
Ŷ~ t !. (13)

Furthermore, using Eq.~5! it is possible to write

Ẋ~ t !5@ȦX~ t !1 i Q̇X~ t !AX~ t !#exp@ iQX~ t !#

5F ȦX~ t !

AX~ t !
1 i Q̇X~ t !GX~ t !. (14)

Equation~14! can also be rewritten as

Ẋ~ t !5vX~ t !X~ t !, (15)

vX(t) being a complex frequency defined as

vX~ t !5
ȦX~ t !

AX~ t !
1 i Q̇X~ t !5

Ẋ~ t !

X~ t !
. (16)

The imaginary part ofvX(t) is the angular velocity of the vecto
X(t) in the complex plane, whereas the real part is related to
time variation of the amplitude.
Journal of Applied Mechanics
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Relationships similar to Eq.~15! can be written for higher orde
derivatives ofX(t). As an example the second-order derivative
the complex processX(t) can be written as

Ẍ~ t !5v Ẋ~ t !Ẋ~ t !5v Ẋ~ t !vX~ t !X~ t ! (17)

being

v Ẋ~ t !5
ȦẊ~ t !

AẊ~ t !
1 i Q̇ Ẋ~ t !5

Ẍ~ t !

Ẋ~ t !
. (18)

Let X1(t) and X2(t) be two random processes such as the P
SX2

(v) is equal to the PSDSX1
(v) but shifted in frequency of a

given quantityDV ~Fig. 1~a!!. As an example let

SX1
~v!5

0.2239

v2 0.1<v<2.4 (19)

SX2
~v!5

0.2239

~v2DV!2 0.11DV<v<2.41DV ~DV53!;

(20)

X1(t) is a broad-band process withaX1
50.36 andqX1

50.69,
whereasX2(t) is a narrow-band process withaX2

50.97 andqX2

50.14.
The sample functionsx1(t) and x2(t) of the X1(t) and X2(t)

processes can be obtained by using the well-known genera
formula ~@19,20#!

xj~ t !5yj~ t !1 i ŷ j~ t !5(
k51

N

A2SXj
~vk!Dv @cos~vkt1Fk!

1 i sen~vkt1Fk!# j 51,2 (21)

N being the number of frequency intervalsDv in which the PSD
SXj

(v) is discretized andFk the random phase angles uniform
distributed in the range 042p. Also, introducing the values ob
tained by Eq.~21! in Eqs.~6a!, ~16!, and~18!, the corresponding
samples of the amplitude and angular velocity processes ca
obtained.

In Fig. 1~b! the sample functionsy1(t) and y2(t) of the pro-
cessesY1(t) and Y2(t) ~obtained using random phase angl
equal for both processes! and the corresponding amplitudes a
reported; it is possible to note that, althoughy1(t) andy2(t) are
entirely different, the amplitudes are exactly coincident. It is a
to be noted that the peaks ofy2(t) follow the amplitude, whereas
the peaks ofy1(t) are often smaller. It could be shown that if th
frequency shiftDV→` then all the peaks ofY2(t) lie in the
AX(t) function.

In Fig. 2~a! sample functions of the processesvXj
(t), obtained

using thexj (t) functions above defined, are plotted versus tim
From this figure it can be noted that the real partsȦXj

(t)/AXj
(t) of

both processes are coincident, whereas the imaginary partsQ̇Xj
(t)

are exactly the same but shifted of a constant quantity equa
DV, i.e.,

Q̇X2
~ t !5Q̇X1

~ t !1DV. (22)

Moreover, the sample function ofQ̇X1
(t) ~the broad-band pro-

cess! fluctuates between positive and negative values, wherea
DV sufficiently large,Q̇X2

(t) is always positive. The behavior o

the Q̇Xj
(t) functions implies that the vectorX2(t) always rotates

toward the positive direction, whereas the vectorX1(t) sometimes
rotates in the negative direction. Obviously the variations
Q̇Xj

(t) with respect to their mean value become less relevan
DV increases, i.e., when the bandwidth of the process decrea

Considering thatyj (t) is the projection on the horizontal rea
axis of the vectorxj (t) rotating in the complex plane, it follows
SEPTEMBER 2000, Vol. 67 Õ 521



Fig. 3 PSD of type „a… and PSD of type „b… used in the numerical simulations
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that yj (t) becomes zero, i.e., a zero crossing occurs whenQXj

5p/2 or 3p/2. Moreover, the extrema ofyj (t) occur when their
derivative crosses the zero level, i.e., when the derivative ofxj (t)
reaches the angular positionsQ Ẋj

5p/2 or 3p/2.
When the vectorx(t) rotates always in the same direction

happens that the maxima ofy(t) are always positive, the minima
are always negative, and between them a zero crossing alw
occurs~Fig. 1~b!!. Two consecutive extrema having the same s
can occur if the vectorx(t) changes the direction of rotation tw
times without crossing the angular position corresponding to
zero level~QXj

5p/2 or 3p/2!; in fact the extrema ofyj (t) also
occur near the instants in whichxj (t) changes the direction o
rotation.

In the case in which the peak and the valley of a range have
same sign, the amplitude of such a range is related on both
amplitude of the vector and the phase angle covered by the ve
between them; if such a phase angle is small, the correspon
range will be small too, independently from the amplitude of t
vector. Furthermore, while each range is completed the deriva
vectorẋ(t) covers half a round in the complex plane reaching
angular positionsQ Ẋj

5p/2 or 3p/2; this implies that the ampli-
tude of each phase excursion of the vectorx(t) ~and so the am-
plitude of the corresponding range! is related to the angular fre
522 Õ Vol. 67, SEPTEMBER 2000
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quency of its derivative. As an example, ifẊ(t) is narrow-band so
that theQ̇ Ẋ(t) function does not own large variations in time, th
peaks of thex(t) samples are almost equispaced in time and
ranges have amplitude similar among them.

In Fig. 2~b! the sample functions of the processesQ̇ Ẋ1
(t) and

Q̇ Ẋ2
(t) are plotted versus time. Comparing the sample function

Q̇ Ẋ1
(t) with that of Q̇X1

(t) in Fig. 2~a! it can be noted that the

two functions are far from each other, but they become closer
closer increasingDV, as can be noted comparing the sample fun
tions of Q̇ Ẋ2

(t) in Fig. 2~b! andQ̇X2
(t) in Fig. 2~a!.

From these observations it is possible to affirm that the suc
sion of the extrema mainly depends on the rotation mode of b
the X(t) and Ẋ(t) processes in the complex plane. In particula

1 the amplitude of each range not crossing the zero valu
strictly related to the amplitude of each phase angle covered
the vectorxj (t) without changing direction, and

2 these phase amplitudes are related to the angular velo
Q̇ Ẋ(t) of the derivative vector due to the fact that the extrem
occur when the derivative vector reaches the positionsQ Ẋ5p/2
or 3p/2.
Fig. 4 Sample functions and range distributions of the process A 1 with PSD of
type „a… and of the process B 1 with PSD of type „b… having both the same param-
eters aXÄ0.15 and q XÄ0.74
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As a confirmation in the next paragraph it will be shown th
the spectral parameters are related to mean values of theQ̇X(t)
andQ̇ Ẋ(t) functions.

3.2 Time-Domain Interpretation of the Spectral Param-
eters. The physical significance of the two spectral paramet
defined above can be better understood by using the definitio
analytic process given in Eq.~5!. It can be shown that the follow
ing relationships hold:

VX5E@Q̇X~ t !# (23a)

rX5E@ uQ̇X~ t !u# (23b)

r̄X5A~E@ uQ̇X~ t !u# !22~E@Q̇X~ t !# !2 (24)

where the symbolu•u means absolute value.
These relationships can be obtained by looking at the fact

the probability density ofAX(t), QX(t), and Q̇X(t) for normal
processes can be written as

pAX
5

AX

l0
expS 2

AX
2

2l0
D (25a)

pQX
5H 1

2p
0<QX<2p

0 otherwise

(25b)

pQ̇X
5

r̄X
2

2@~Q̇X2VX!21 r̄X
2 #3/2

. (26)

Equations~23! to ~24! show that

• VX is the mean value of theQ̇X(t) function and it is directly
proportional to the phase angle covered by the processX(t) in the
positive direction minus that covered in the negative direction

• rX is the mean value of the absolute value of theQ̇X(t)
function and it is directly proportional to the whole phase an
covered by the processX(t) in both the positive and negativ
direction.

• r̄X is proportional to the double of the whole phase an
covered by the processX(t) in the negative direction.

Moreover, by using the well-known relationship

SẊ~v!5v2SX~v! (27)

one can write

V Ẋ5
l3

l2
5E@Q̇ Ẋ# (28a)

r Ẋ5Al4

l2
5E@ uQ̇ Ẋu# (28b)

r̄ Ẋ5A~E@ uQ̇ Ẋ~ t !u# !22~E@Q̇ Ẋ~ t !# !2. (29)

Then, by means of simple algebra, the spectral parameterqX and
the irregularity parameteraX can be rewritten in the time domai
as

qX5A~E@ uQ̇Xu# !22~E@Q̇X# !2

~E@ uQ̇Xu# !2
(30a)

aX5
E@ uQ̇Xu#

E@ uQ̇ Ẋu#
5

rX

r Ẋ

. (30b)

From these relationships some further considerations on the
havior of stochastic processes can be made.
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It has been observed in the previous section that two dist
processes having the same shape of the one-sided PSD but s
of DV in the frequency domain exhibits the same amplitude
different phase anglesQX(t) and angular frequencyQ̇X(t), the
latter related by means of Eq.~22!. Furthermore, the succession o
the extrema mainly depends on the rotation mode of the ve
process itself and its derivative. For these reasons it is not a
prise thatqX andaX are only related to the variation of the pha
angleQX(t), Q̇X(t), andQ̇ Ẋ(t) in the time domain.

Equation~30a! shows thatqX depends on the ratio between th
total phase angle covered in the negative direction and that
ered on the whole by the vectorX(t); in the case of narrow-band
processes it isQ̇X(t).0, E@Q̇X(t)#'E@ uQ̇X(t)u# andqX'0.

Equation ~30b! shows that theaX parameter is given by the
ratio between the absolute values ofQ̇X(t) and Q̇ Ẋ(t) functions
that correspond to the ratio between the total phase angle cov
in both the positive and negative directions by the process ve
and by its derivative. In the case of narrow-band processes
Q̇X(t)'Q̇ Ẋ(t) andaX'1.

Therefore, the spectral parameters are related to the total p
angle covered in the positive and negative directions by the v
tors and not to the single excursions~ranges! in each direction;
consequently, theqX and aX parameters are inadequate to ful
describe their statistical distribution.

4 New Parameters for the Characterization of Spec-
tral Contents in Random Processes

In this section new parameters are introduced in order to qu
tify the bandwidth of processes and their effectiveness is valida
by means of proper digital simulations.

As previously stated, all the attempts to directly relate the ra
distribution of a wide-band processes to its PSD have not b
successful. It has been recognized that processes having the
value ofaX ~i.e., the same distribution of peaks! have in general a
different range distribution, whereas it is self-evident that p
cesses having different dynamic characteristics can own P
with the same ratio between the position of the centroid and
radius of gyration about the centroid, i.e., the same parameterqX .
Moreover, it has been observed that the succession of the ext
depends on the rotation mode in the complex plane, not only
the processX(t) but also of its derivativeẊ(t). These consider-
ations suggest that parameters involving higher order spectral
ments and quantities related to the angular velocities of the
derivative of the process should be introduced in order to quan
more accurately the bandwidth of the process.

By comparing Eqs.~9! and~28! one realizes that the bandwidt
parameters of the derivative of a process can be obtained f
that of the process given in Eqs.~11! and~12!, increasing by two
the order of the spectral moments. Taking into account these
siderations, the bandwidth parameters relative to the deriva
processẊ(t) are introduced:

qẊ5
r̄ Ẋ

r Ẋ

5A12
l3

2

l2l4

5A~E@ uQ̇ Ẋu# !22~E@Q̇ Ẋ# !2

~E@ uQ̇ Ẋu# !2
0<qẊ<1 (31)

a Ẋ5
r Ẋ

ṙ Ẍ

5A l3
2

l2l6

5
E@ uQ̇ Ẋu#

E@ uQ̇ Ẍu#
0<a Ẋ<1. (32)

These parameters are expected to allow a more complete ch
terization of the spectral properties of random processes.

In order to prove this statement, several numerical simulati
have been carried out using different shapes~unimodal, bimodal,
SEPTEMBER 2000, Vol. 67 Õ 523



Fig. 5 PSDs of the processes A 2 and B 2 having both aXÉ.76, q XÉ.47 a ẊÉ.97 and q ẊÉ.20
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etc.! of PSDs. As an example, in the following the results relat
to the bimodal PSD types~a! and~b! shown in Fig. 3 and defined
as

SX
~a!5H ~2.1h13.4dh1.25hd22.1!/v2 0.1<v<2.1

hv2 2.11d<v<4.11d
(33)

SX
~b!5H ~2h16.2d1d218.61!

~0.65d1.105d21.9!v2 1.0<v<2.1

h/v2 2.11d<v<4.11d

(34)

are shown. The choice of these PSDs is due to the fact that
bimodal spectra not only can assume a wide range of the spe
parameters relative to the process~@20#! but they allow one to
obtain different values of the parameters relative to the deriva
process, simply varying the two parametersh andd ~Fig. 3!. From
PSDs, the~a! and ~b! sample functions of processes having d
ferent dynamic characteristics have been simulated by mean
Eq. ~21!.
524 Õ Vol. 67, SEPTEMBER 2000
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In particular, Fig. 4 shows the sample functions and the ra
distributions of a couple of processes, one with an~a! type PSD
(h5.004,d57.56) calledA1 and one with a~b! type PSD (h
5.675,d5.072) calledB1 , having the same parametersaX and
qX ~equal to 0.15 and 0.74, respectively! relative to the process
but with different analogous parameters relative to their deri
tives ~qẊ50.82 anda Ẋ50.78 forA1 , qẊ50.57 anda Ẋ50.31 for
B1!. It can be seen that the processA1 is characterized by many
cycles with intermediate ranges mixed to a few cycles with la
and small ranges whereas the processB1 is characterized by many
cycles with large ranges mixed to cycles with very small rang

Moreover, Fig. 5 shows two PSDs, one of type~a! (h
5217.4,d522.17) calledA2 and one of type~b! (h57.51,d
51.14) calledB2 having a very different shape but the sam
spectral parametersaX'.76, qX'.47a Ẋ'.97, qẊ'.20. Figure 6
shows two corresponding sample functions and the range di
butions. From this figure it is possible to see how the equality
the four selected parameters ensures the coincidence of the r
distribution since the small deviation observed is negligible
Fig. 6 Sample functions and range distributions of the process A 2 and B 2
having the same parameters aXÉ.76, q XÉ.47, a ẊÉ.97 and q ẊÉ.20
Transactions of the ASME
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practical application purposes. In other words, for practical p
poses the range distribution is unambiguously related to the
rametersa andq of both the process and its time derivative, a
consequently accurate relationships between the range distrib
and PSD should take into account these four parameters.

The identification of the spectral parameters on which the ra
distribution of a wide-band process depends is the first step in
detection of the relationships between range distribution and P
The second step consists in the determination of closed-form
pressions relating the relevant spectral parameters to the r
distribution. Obviously, it needs further study, but at this stage
the research some practical results can already be obtained. A
example, closed-form relationships between PSD and the ra
distribution have been obtained by Petrucci and Zuccarello@21# in
the particular case of broad-band processes (ax!1, qx@0) whose
time derivative is a narrow-band process (a ẋ'1; qẋ'0). In this
case the ranges have a Rayleigh distribution:

p~r !5
r

MR
expF2

r 2

2MR
2 G (35)

in which the modal valueMR is related to the the standard devi
tion sX and the spectral parametersax andqx of the process by a
third order polynomial, i.e.,

MR5sX(
w50

3

(
z50

w

gwzaX
z qX

w2z , (36)

being the polynomial coefficientsgwz obtained by a best-fitting
procedure carried out using the least square technique and g
in ~@21#!.

5 Practical Example
In the following, as a practical example, Eqs.~35!–~36! have

been used for the direct evaluation of the range distributions of
displacements that occur in a structure subjected to wind for
In this case the excitation is the horizontal velocity of the wi
that can be represented by a random processXw(t), whose spec-
trum is given by~@22#!.

SXw
~ f !54KV̄10

2
L/V̄10

@21~ f L/V̄10!
2#5/6

, (37)

where f is the frequency in Hz,K is a factor in the range 0.005
<K<0.05 depending on the local wind profile,V̄10 is the mean
wind speed at 10 ft above the ground, andL is the length scale
related to the structural dimensions. For simplicity, a struct
represented by a two-degree-of-freedom system~Fig. 7!, as an
antenna~having massm1 , stiffnessk1 , damping coefficientz1 ,
Journal of Applied Mechanics
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drag pressure coefficientC and areas1! joined to a base~having
mass m2 , stiffness k2 and damping coefficientz2! has been
considered.

Figure 8~a! shows the PSDSXd
( f ) of the displacement proces

Xd(t) of the m1 mass~antenna! obtained by solving the differen
tial equation of motion of the system through the normal mo
method~@20#!. As an example the following values of the param
eters have been assumed:K50.01, V̄10520 m/sL560 m for the
wind velocity spectrum andm15100 kg, m251000 kg, k1

5100 Nsmm21, k253000 Nsmm21, z15z250.1, C50.9, and
s151 m2 for the system. From the analysis ofSXd

( f ) follows that
Xd(t) is a wide-band displacement process~ax'0.58 andqx
'0.75! with narrow-band derivative (a ẋ'1, qẋ'0). Therefore,
the corresponding distribution of the range can be calculated
rectly using the closed-form relationship~35!. For comparison
Fig. 8~b! shows the range distribution obtained by digital simu
tions along with those obtained using Eqs.~35! and ~36!. The
good agreement between the curves corroborates that for prac
purposes, direct relationships between range distribution and
can be obtained provided that one take into account the four s
tral parametersax , qx , a ẋ , andqẋ .

6 Conclusions
The dynamical properties of random processes are usually

scribed by means of spectral parameters, such as the regu
factor aX and the spectral parameterqX , that are defined in the
frequency domain. In this paper, using the concept of anal
process, the physical and mathematical meaning of such pa
eters has been readdressed and a time-domain interpretatio
been given. In particular it has been shown that these spe
parameters are related to the angular velocity of the analytic
cess in the complex plane.

The above interpretations as well as further considerations
the behavior of the analytic processes have shown that the irr
larity factor and the bandwidth parameter of the process can
give a full probabilistic description of the ranges in a rando
process. As a confirmation it has been shown that processes
ing the same values of both these parameters can have quite
ferent range distributions.

Fig. 7 Two-degree-of freedom system considered in the prac-
tical example
Fig. 8 PSD of the output displacement process Xw „a… and relative range distribution „b…
SEPTEMBER 2000, Vol. 67 Õ 525
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Moreover, it has been shown that the range distribution depe
not only on the spectral parametersaX andqX of the process, but
also on the analogous parameters of its derivativea Ẋ andqẊ .

As a conclusion, it is possible to state that to obtain accu
relationships between range distributions and PSD one must
into account both the irregularity factorax and the spectral pa
rameterqx , and the parametersa ẋ andqẋ of the derivative of the
process.
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On Displacement Fields in
Orthotropic Laminates Containing
an Elliptical Hole
The classical Savin solution for the stress induced in an orthotropic plate containin
elliptical hole places no restrictions on remote rigid-body rotations. In this paper
Savin procedure is used to obtain a solution for which remote rigid-body rotations
required to be zero. The validity of these new results is demonstrated by comp
predicted displacement fields near a circular hole in specially orthotropic compo
panels with those measured using moire´ techniques as well as those predicted using
finite element method.@S0021-8936~00!01303-9#
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Introduction
Due to the increasing use of polymeric composites in struct

applications, there is widespread interest in the mechanica
sponse of thin orthotropic panels containing holes, cutouts
other irregularities~e.g., see Refs.@1–7#!. Several analytical tech
niques have been developed to study these problems, inclu
the integral transform method~@8#!, singular integral equation
method~@9,10#!, Stroh formalism~@11#!, and the classical com
plex function method~@12,13#!. Using a mapping approach, Sav
@12# developed a general solution method to determine the st
fields induced in orthotropic plates containing an elliptical ho
and subject to remote uniform loading. The corresponding s
tions for strain fields can be obtained by substituting Savin’s
lutions for stress into the orthotropic form of Hooke’s Law. O
would expect that the displacement fields induced in the p
could then be obtained by integrating the strain fields to ob
displacement fields. However, as mentioned by Savin~see the first
footnote which appears on pg. 38 of Ref.@12#!, the solutions he
derived are based on an incomplete specification of rigid-b
rotations. Hence, the displacement fields inferred from the Sa
expressions for stress are only valid for a special class of p
lems. Specifically,~as will be discussed! the displacement fields
are only valid for some types of specially orthotropic laminat
and furthermore when such laminates are subjected to remote
mal stresses only~i.e., whentxy

` 50!.
The objective of this article is to reformulate the Savin soluti

so as to account for rigid-body rotations and therefore obtain
pressions for in-plane displacement fields that are valid for
orthotropic plate and for any combination of in-plane loading. T
fundamental equations that govern the behavior of orthotro
plates are summarized in the next section. Simplifications
occur if the plate is specially orthotropic rather than genera
orthotropic are also discussed. Next, a revised solution base
the Savin approach and which accounts for rigid-body rotation
presented. Finally, predictions based on the revised solution
compared with experimental measurements obtained using m´
techniques as well as with predictions based on the finite elem
method.

It is appropriate to note that the difficulties associated with
Savin solution are avoided if solutions based on the Stroh form
ism are used~@11#!. Nevertheless, the Savin solution is still wide
employed~@4,14–16#!. It is important that the limitation of the

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
25, 1999; final revision, Apr. 26, 2000. Associate Technical Editor: J. W. Ju. D
cussion on the paper should be addressed to the Technical Editor, Professor Le
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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solution presented by Savin be appreciated, since several mo
experimental methods~for example, those based on the moi´
effect! are in essence techniques used to measure displace
fields rather than stress or strain fields. A successful compar
between displacements predicted on the basis of the Savin pr
dure and experimental measurements requires use of the sol
presented herein.

Fundamental Equations
The two-dimensional equilibrium equations~neglecting body

forces!, the strain-displacement relations, and the compatibi
condition are listed below as Eqs.~1!–~3!, respectively:

]sx

]x
1

]txy

]y
50,

]sy

]y
1

]txy

]x
50 (1)

«x5
]u

]x
, «y5

]v
]y

, gxy5
]v
]x

1
]u

]y
(2)

]2«x

]y2 1
]2«y

]x2 5
]2gxy

]x]y
(3)

whereu, v are in-plane displacements in thex- andy-directions,
sx , sy , txy are in-plane stresses, and«x , «y , and gxy are in-
plane strains. Hooke’s law for a generally orthotropic plate can
expressed as

«x5a11sx1a12sy1a16txy

«y5a12sx1a22sy1a26txy (4)

gxy5a16sx1a26sy1a66txy

whereai j are elements of reduced compliance matrix. To ins
satisfaction of the equilibrium equations, stresses are express
terms of an Airy stress function,U(x,y):

sx5
]2U

]y2 , sy5
]2U

]x2 , txy52
]2U

]x]y
. (5)

Substituting Eqs.~4! and~5! into Eq.~3! results in the biharmonic
equation for generally orthotropic materials:

a22

]4U

]x4 22a26

]4U

]x3]y
1~2a121a66!

]4U

]x2]y2

22a16

]4U

]x]y3 1a11

]4U

]y4 50. (6)

The general solution of Eq.~6! depends on the roots of th
characteristic equation. Assuming the roots have the general f
F(x1sy), the characteristic equation becomes

a11s
422a16s

31~2a121a66!s
222a26s1a2250. (7)
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Through a consideration of potential energy, Lekhnitskii@13#
has shown that the characteristic equation has no real roots. T
for a generally orthotropic plate the roots of the characteri
equation are always complex and are of the form

s1,35a16 ib1 s2,45a26 ib2 (8)

wherea1 , a2 , b1 , andb2 are real constants andb1.0, b2.0.
For generally orthotropic platesa1Þa2 andb1Þb2 .

The Airy stress function may be expressed using two dist
roots, and has the general form

U52 Re@F1~x1s1y!1F2~x1s2y!# (9)

where Re@ # denotes the real part of the quantity in brackets. F
further simplification, let

f~z1!5
]F1~z1!

]z1
c~z2!5

]F2~z2!

]z2
(10)

wherez15x1s1y, z25x1s2y, and f(z1) and c(z2) are com-
plex functions. Substituting Eqs.~9! and ~10! into Eq. ~5!, the
stress components may be expressed as

sxx52 Re@s1
2f8~z1!1s2

2c8~z2!#

syy52 Re@f8~z1!1c8~z2!# (11)

txy522 Re@s1f8~z1!1s2c8~z2!#.

Expressions for the displacement fields can be obtained by ap
ing Hooke’s law~Eq. ~4!! and integrating, resulting in

u52 Re@p1f~z1!1p2c~z2!#
(12)

v52 Re@q1f~z1!1q2c~z2!#

where
p1 , p2 , q1 , q2 are complex constants, defined as follows:

p15a11s1
21a122a16s1

p25a11s2
21a122a16s2 (13)

q15a12s11
a22

s1
2a26

q25a12s21
a22

s2
2a26.

The preceding results are simplified if the plate is specia
orthotropic~i.e., if a165a2650!. In this case the biharmonic an
characteristic equations~Eqs.~6! and ~7!, respectively! reduce to

a22

]4U

]x4 1~2a121a66!
]4U

]x2]y2 1a11

]4U

]y4 50 (14)

a11s
41~2a121a66!s

21a2250. (15)

The characteristic equation can alternatively be written as

s412xs21l250 (16)

where

x5S Exx

2Gxy
2nxyD , l5AExx

Eyy
. (17)

For specially orthotropic materialsa15a25a. Hence, if a16
5a2650, then the form of the roots of the characteristic equat
may be grouped into three possible cases~compare with Eq.~8!!.

Case I. x,l: In this caseaÞ0, b15b25b, and the roots are
complex and of the form

s1,35a6 ib s2,452a6 ib

Case II. x.l: In this casea50, b1Þb2 , and the roots are
purely imaginary and of the form
528 Õ Vol. 67, SEPTEMBER 2000
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s1,356 ib1 s2,456 ib2 .

Case III. x5l: In this casea50, b15b25b, and the roots
are repeated and purely imaginary:

s1,2,3,456 ib.

For Cases I and II the Airy stress function can again be
pressed using two distinct roots, in accordance with Eq.~9!. Equa-
tion ~9! is not valid for Case III, however, since in this case t
roots are repeated. Isotropic plates~or symmetric quasi-isotropic
composite plates! correspond to Case III, since in these instanc
Exx5Eyy5E, nxy5nyx5n, Gxy5Gyx5G5E/2(11n), and
thereforex5l51, satisfying the conditions for Case III. The re
sponse of isotropic or quasi-isotropic plates is not the focus of
paper and will not be further discussed. The interested read
referred to Refs.~@11,17#!.

In summary, the solution for a thin orthotropic plate subject
to in-plane loading involves finding complex functionf(z1) and
c(z2) which satisfy the appropriate biharmonic equation~e.g.,
Eqs. ~6! or ~14!! and the prevailing boundary conditions. Onc
these functions are found the problem is solved.

Application of the Savin Solution Procedure
A plate containing an elliptical hole with major and minor ax

a andb, respectively, and referenced to an in-planex2y coordi-
nate system is shown in Fig. 1. Savin found that the followi
complex functions are applicable in this case:

f~z1!5~B* 1 iC* !z11f0 (18)
c~z2!5~B8* 1 iC8* !z21w0

whereB* , C* , B8* , andC8* are real constants andf0(z1) and
c0(z2) are holomorphic functions of the following form:

f0~z1!5a01
a21

z1
1

a22

z1
2 1

a23

z1
3 1 . . .

(19)

c0~z2!5b01
b21

z2
1

b22

z2
2 1

b23

z2
3 1 . . . .

To satisfy the stress boundary conditions at infinity, Savin s
stituted Eq.~18! into Eq. ~11! and letz1 ,z2→`, resulting in the
following three equations:

Fig. 1 Schematic of infinite orthotropic plate with elliptical
hole
Transactions of the ASME
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sx
`5s1

2~B* 1 iC* !1s1
2~B8* 1 iC8* !1s2

2~B* 1 iC* !

1s2
2~B8* 1 iC8* !

sy
`5~B* 1 iC* !1~B* 1 iC* !1~B8* 1 iC8* !1~B8* 1 iC8* !

(20)

2txy
` 5s1~B* 1 iC* !1s1~B* 1 iC* !1s2~B8* 1 iC8* !

1s2~B8* 1 iC8* !

where sx
` , sy

` , and txy
` are remote in-plane stresses. Sin

Eqs. ~20! represent three equations in four unknowns, a fou
equation is needed to uniquely determine the four const
B* , C* , B8* , and C8* . Savin simply assumedC* 50,
while acknowledging that by doing so displacement bound
conditions associated with rigid-body rotations are not necess
satisfied. The following relatively simple expressions for t
remaining three constants are obtained if it is assumed
C* 50:

B* 5
sx

`1~a2
21b2

2!sy
`12a2txy

`

2@~a22a1!21~b2
22b1

2!#

B8* 5
2sx

`1~a1
22b1

222a1a2!sy
`22a2txy

`

2@~a22a1!21~b2
22b1

2!#
(21)

C8* 5
~a12a2!sx

`1@a2~a1
22b1

2!2a1~a2
22b2

2!#sy
`

2b2@~a22a1!21~b2
22b1

2!#

1
@~a1

22b1
2!2~a2

22b2
2!#txy

`

2b2@~a22a1!21~b2
22b1

2!#
.

However, if rigid-body rotations are taken into account, then
generalC* Þ0 and therefore Eqs.~21! do not correspond to any
particular level of rigid-body rotation. Savin noted~see the first
footnote which appears on pg. 38 of Ref.@12#! that the needed
fourth equation can be obtained through consideration of
rigid-body rotation at infinitely distant points of the plate. Rigi
body rotation is related to in-plane displacement fields accord
to

v̄5
1

2 S ]v
]x

2
]u

]yD .

It is herein assumed that rigid-body rotations are zero at infin
which implies

]v
]xU

`

5
]u

]yU
`

. (22)

Equations~20! and ~22! form a system of four equations, an
were used to determine the four unknown real constantsB* , C* ,
B8* , and C8* . Since the associated algebra is extensive, E
~20!, ~22! were solved symbolically using MAPLE. The genera
ized expressions for the constantsB* , C* , B8* , and C8* are
lengthy and appear as Eqs.~A1!–~A4! in the Appendix. In all of
the following discussion the constantsB* , C* , B8* , andC8* are
those given by Eqs.~A1!–~A4! rather than Eqs.~21!.

The remaining solution steps are identical to those describe
Savin @12#, although intermediate and final results differ som
what due to the revised form ofB* , C* , B8* , andC8* . In order
to find the holomorphic functions,f0(z1) andc0(z2), a mapping
is used that transfers the physical area outside the elliptical
into a unit circle according to

z15v1~z1!5
a1 is1b

2
z11

a2 is1b

2

1

z1 (23)
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z25v2~z2!5
a1 is2b

2
z21

a2 is2b

2

1

z2
.

After inversion, the functions become~Savin showed only nega
tive sign here!

z15
z16Az1

22~a21s1
2b2!

a1 is1b

z25
z26Az2

22~a21s2
2b2!

a1 is2b
.

The sign is taken such thatz1 andz2 are inside a unit circle, i.e.

uz1u<1 and uz2u<1

Traction-free boundary conditions are enforced around
boundary of the hole to solve for the holomorphic functio
f0(z1) andc0(z2). The boundary conditions around an elliptic
hole are

]U

]x
52E

0

s

Ynds1C1 ,
]U

]y
5E

0

s

Xnds1C2 (24)

whereC1 and C2 are arbitrary real constants,Xn and Yn are re-
sulting forces along the elliptical hole acting inx andy direction,
ands is an arc measured from an arbitrarily chosen point on
contour of the hole. Inserting Eq.~9! into Eq. ~24!, the boundary
conditions may be expressed in terms of the complex functi
f(z1) andc(z2):

f 152E
0

s

Ynds1C152 Re@f~z1!1c~z2!#

(25)

f 25E
0

s

Xnds1C252 Re@s1f~z1!1s2c~z2!#.

Inserting Eq.~18! into Eq. ~25!, the boundary conditions can b
expressed in terms of the functionsf0(z1) andc0(z2):

2 Re@f0~z1!1c0~z2!#5 f 122 Re@~B* 1 iC* !z11B ln z2

1~B8* 1 iC8* !z2#5 f 1
0

(26)
2 Re@s1f0~z1!1s2c0~z2!#5 f 222 Re@s1~B* 1 iC* !z1

1s2~B8* 1 iC8* !z2#5 f 2
0.

Now, solving the problem by finding functionsf(z1) and
c(z2) reduces to finding the holomorphic functionsf0(z1) and
c0(z2). The Schwartz formula is applied and the following not
tion is introduced:

K15
~B* 1 iC* !~a1 is1b!1~B8* 1 iC8* !~a1 is2b!

2

K25
~B* 1 iC* !~a2 is1b!1~B8* 1 iC8* !~a2 is2b!

2
(27)

K35
s1~B* 1 iC* !~a1 is1b!1s2~B8* 1 iC8* !~a1 is2b!

2

K45
s1~B* 1 iC* !~a2 is1b!1s2~B8* 1 iC8* !~a2 is2b!

2

There results

f0~z1!52
~K31K4!2s2~K11K2!

s12s2
z11l1

(28)

c0~z2!5
~K31K4!2s1~K11K2!

s12s2
z21l2
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Fig. 2 „a… Measured v -displacement fringe pattern induced in a †0ÕÁ45Õ90‡s boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to sy

`Ä93 MPa „†6‡…. „b… v -displacement fringe pattern for a †0ÕÁ45Õ90‡s boron-epoxy panel containing a 25.4-mm-
dia circular hole, subjected to sy

`Ä93 MPa, predicted according to the original Savin solution. „c… v -displacement fringe pattern
for a †0ÕÁ45Õ90‡s boron-epoxy panel containing a 25.4-mm-dia circular hole, subjected to sy

`Ä93 MPa, predicted according to the
revised solution. „d… v -displacement fringe pattern for a †0ÕÁ45Õ90‡s boron-epoxy panel containing a 25.4-mm-dia circular hole,
subjected to sy

`Ä93 MPa, predicted by a finite element method „ANSYS… analysis.
for

:

wherel1 and l2 are arbitrary constants of integration and we
ignored by Savin. Finally, the holomorphic functions are obtain
as

f0~z1!5
2 i @bsx

`1 ias2sy
`1~bs21 ia !txy

` #

2~s12s2!
z1

(29)

c0~z2!5
2 i @bsx

`1 ias1sy
`1~bs11 ia !txy

` #

2~s12s2!
z2 .
530 Õ Vol. 67, SEPTEMBER 2000
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This completes the solution of the problem. The expressions
in-plane stresses and displacements~Eqs.~11! and ~12!! can now
be expressed in more physically meaningful forms, as follows

sx5sx
`12 Re@s1

2f08~z1!1s2
2c08~z2!#

sy5sy
`12 Re@f08~z1!1c08~z2!# (30)

txy5txy
` 22 Re@s1f08~z1!1s2c08~z2!#
Transactions of the ASME



Fig. 3 „a… Measured u -displacement fringe pattern induced in a †0ÕÁ45Õ90‡s boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to sy

`Ä93 MPa „†6‡…. „b… u -displacement fringe pattern for a †0ÕÁ45Õ90‡s boron-epoxy panel containing a 25.4-mm-
dia circular hole, subjected to sy

`Ä93 MPa, predicted according to the original Savin solution. „c… u -displacement fringe pattern
for a †0ÕÁ45Õ90‡s boron-epoxy panel containing a 25.4-mm-dia circular hole, subjected to sy

`Ä93 MPa, predicted according to the
revised solution. „d… u -displacement fringe pattern for a †0ÕÁ45Õ90‡s boron-epoxy panel containing a 25.4-mm-dia circular hole,
subjected to sy

`Ä93 MPa, predicted by the finite element method „ANSYS… analysis.
m

and

u5u`12 Re@p1f0~z1!1p2c0~z2!#

5x~a11sx
`1a12sy

`1a16txy
` !1

y

2
~a16sx

`1a26sy
`1a66txy

` !

12 Re@p1f0~z1!1p2c0~z2!# (31)
Journal of Applied Mechanics
v5v`12 Re@q1f0~z1!1q2c0~z2!#

5y~a12sx
`1a22sy

`1a26txy
` !1

x

2
~a16sx

`1a26sy
`1a66txy

` !

12 Re@q1f0~z1!1q2c0~z2!#

whereu` and v` are remote in-plane displacements. Note fro
SEPTEMBER 2000, Vol. 67 Õ 531
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Table 1 Comparison of the predicted response at the point x
Ä377 mm, yÄ1085 mm for a †0ÕÁ45Õ90‡s boron-epoxy panel
containing a 25.4-mm-dia circular hole, subjected to sy

`

Ä90.3 MPa „13,100 psi …

Savin Revised ANSYS

u (mm) 20.136 20.136 20.136
v (mm) 1.86 1.86 1.92
sx (MPa) '0 '0 '0
sy (MPa) 90.3 90.3 90.3
txy (MPa) '0 '0 '0
«x (mm/m) 2359 2359 2359
«y (mm/m) 1713 1713 1666
gxy (mrad) 0 0 0
-

oth

532 Õ Vol. 67, SEPTEMBER 2000
Eq. ~19! that all terms within Re@ # in Eqs.~30! and~31! approach
zero asz1 ,z2→`. Hence, these terms represent the disturbanc
the stress and displacement fields due to the presence of the
tical hole.

Comparisons Between Experimental Measurements and
Analytical ÕNumerical Predictions

Displacement fields near a 25.4-mm-diameter circular hole
composite panels have been measured using geometric moir´, as
reported in Refs.~@6,7#!. In this paper these previously reporte
experimental measurements will be compared to~a! predictions
based on the original Savin solution,~b! the revised solution as
presented above, and~c! predictions obtained using the finite ele
ment code ANSYS. Specially orthotropic@0/645/90#s laminates
subjected to uniaxial tensile loadings were considered in b
Fig. 4 „a… v -displacement fringe pattern for a †0ÕÁ45Õ90‡s
boron-epoxy panel containing a 25.4-mm-dia circular hole, sub-
jected to txy

` Ä17.2 MPa, predicted according to the original
Savin solution. „b… v -displacement fringe pattern for a †0Õ
Á45Õ90‡s boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to txy

` Ä17.2 MPa, predicted according to the
revised solution. „c… v -displacement fringe pattern for a †0Õ
Á45Õ90‡s boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to txy

` Ä17.2 MPa, predicted by the finite ele-
ment method „ANSYS… analysis.
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Fig. 5 „a… u -displacement fringe pattern for a †0ÕÁ45Õ90‡s
boron-epoxy panel containing a 25.4-mm-dia circular hole, sub-
jected to txy

` Ä17.2 MPa, predicted according to the original
Savin solution. „b… u -displacement fringe pattern for a †0Õ
Á45Õ90‡s boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to txy

` Ä17.2 MPa, predicted according to the
revised solution. „c… u -displacement fringe pattern for a †0Õ
Á45Õ90‡s boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to txy

` Ä17.2 MPa, predicted by the finite ele-
ment method „ANSYS… analysis.
e
e

,
n
a

n

~@6,7#!. However, in~@6#! the composite panel tested was com
posed of a boron-epoxy material system, whereas in~@7#! the
panel tested was a glass-epoxy panel. Although an identical st
ing sequence was used in both studies, the material prope
involved are such that the panel tested in~@6#! corresponds to
Case II ~i.e., the roots of the characteristic equation are pur
imaginary!, whereas the panel tested in~@7#! corresponds to Cas
I ~i.e., the roots of the characteristic equation are complex!.

Comparisons will also be made for pure shear loadings, i.e.
sx

`5sy
`50, txy

` Þ0. Since experimental measurements are
available for this second loading condition, in this second c
comparisons will be made between~a! the original Savin solution,
~b! the revised solution, and~c! finite element predictions.

Geometric moire´ is an optical technique that reveals in-pla
Journal of Applied Mechanics
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Table 2 Comparison of the predicted response at the point x
Ä599 mm, yÄ161 mm for a †0ÕÁ45Õ90‡s boron-epoxy panel
containing a 25.4-mm-dia circular hole, subjected to txy

`

Ä17.2 MPa „2500 psi …

Savin Revised ANSYS

u (mm) 0.060 0.049 0.049
v (mm) 0.130 0.169 0.169
sx (MPa) 20.04 20.04 2.04
sy (MPa) '0 '0 '0
txy (MPa) 17.2 17.2 17.2
«x (mm/m) '0 '0 '0
«y (mm/m) '0 '0 '0
gxy (mrad) 605 605 606
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Fig. 6 „a… Measured v -displacement fringe pattern induced in a †0ÕÁ45Õ90‡s glass-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to sy

`Ä198 MPa „†7‡…. „b… v -displacement fringe pattern for a †0ÕÁ45Õ90‡s glass-epoxy panel containing a 25.4-
mm-dia circular hole, subjected to sy

`Ä198 MPa, predicted according to the original Savin solution „resolution reduced to 50.8
mm…. „c… v -displacement fringe pattern for a †0ÕÁ45Õ90‡s glass-epoxy panel containing a 25.4-mm-dia circular hole, subjected to
sy

`Ä198 MPa, predicted according to the revised solution. „d… v -displacement fringe pattern for a †0ÕÁ45Õ90‡s glass-epoxy panel
containing a 25.4-mm-dia circular hole, subjected to sy

`Ä198 MPa, predicted by the finite element method „ANSYS… analysis.
n
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d an
displacements in the form of alternating light-and-dark lin
called ‘‘fringes.’’ To facilitate a direct whole-field compariso
between measured and predicted displacement fields, a pro
was written in-house and used to plot the fringe patterns predi
by the original and revised Savin solutions. Similarly, in-pla
displacement fields predicted using ANSYS were plotted as c
tour lines of constant displacement. This procedure allows a di
whole-field comparison between measured and predicted disp
ment fields. In addition, displacements calculated according to
534 Õ Vol. 67, SEPTEMBER 2000
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original solution, the revised solution, and the finite eleme
method analysis, will be compared at a particular point far
moved from the circular hole.

Details of the geometric moire´ method are given elsewher
~@18#!. In simplest form, a grating~called the specimen grating! is
bonded to the specimen surface. The specimen grating is
viewed through a second grating~called the reference grating!.
When a load is applied the specimen grating is deformed, an
interference pattern~i.e., a fringe pattern! develops which repre-
Transactions of the ASME



Fig. 7 „a… u -displacement fringe pattern for a †0ÕÁ45Õ90‡s
glass-epoxy panel containing a 25.4-mm-dia circular hole, sub-
jected to sy

`Ä198 MPa, predicted according to the original
Savin solution „resolution reduced to 50.8 mm…. „b…
u -displacement fringe pattern for a †0ÕÁ45Õ90‡s glass-epoxy
panel containing a 25.4-mm-dia circular hole, subjected to sy

`

Ä198 MPa, predicted according to the revised solution. „c…
u -displacement fringe pattern for a †0ÕÁ45Õ90‡s glass-epoxy
panel containing a 25.4-mm-dia circular hole, subjected to sy

`

Ä198 MPa, predicted by the finite element method „ANSYS…

analysis.
d
d

g

m
s

d
s

sents in-plane displacements. Measurement resolution depen
the grating frequency. Different grating frequencies were use
~@6,7#!, and hence the fringe patterns reported in~@6,7#! were ob-
tained at two different levels of resolution. The predicted frin
patterns presented in the following sections were therefore ge
ated using different resolution levels, i.e., the resolution assu
to create the predicted fringe patterns is varied from one sub
tion to the next, as appropriate.

For brevity, the finite element meshes used will not be
scribed in detail. Briefly, six-node triangular elements were u
during the finite element method analyses. Convergence stu
were performed to insure that the mesh densities used were s
cient to accurately capture details of the predicted stre
displacement fields. At least 800 elements were used in all ca
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Table 3 Comparison of the predicted response at the point x
Ä377 mm, yÄ1085 mm for a †0ÕÁ45Õ90‡s glass-epoxy panel
containing a 25.4-mm-dia circular hole, subjected to sy

`

Ä198 MPa „28,700 psi …

Savin Revised ANSYS

u (mm) 262.7 21.04 21.04
v (mm) 32.3 11.0 11.0
sx (MPa) '0 '0 '0
sy (MPa) 198 198 198
txy (MPa) '0 '0 '0
«x (mm/m) 22760 22760 22760
«y (mm/m) 10,150 10,150 10,150
gxy (mrad) 0 0 0
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Fig. 8 „a… v -displacement fringe pattern for a †0ÕÁ45Õ90‡s
glass-epoxy panel containing a 25.4-mm-dia circular hole, sub-
jected to txy

` Ä17.2 MPa, predicted according to the original
Savin solution „resolution Ä2.76 mm…. „b… v -displacement fringe
pattern for a †0ÕÁ45Õ90‡s glass-epoxy panel containing a 25.4-
mm-dia circular hole, subjected to txy

` Ä17.2 MPa, predicted ac-
cording to the revised solution „resolution Ä1.38 mm…. „c…
v -displacement fringe pattern for a †0ÕÁ45Õ90‡s glass-epoxy
panel containing a 25.4-mm-dia circular hole, subjected to txy

`

Ä17.2 MPa, predicted by the finite element method „ANSYS…

analysis „resolution Ä1.38 mm….
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Composite Panel With Purely Imaginary Roots
The material properties for the boron-epoxy panel studied

~@6#! were reported to beExx5113 GPa ~16.40 Msi!, Eyy
552.7 GPa ~7.65 Msi!, Gxy528.5 GPa ~4.13 Msi!, and nxy
50.45. The roots (s1 ,s2) of the characteristic equation for thi
material are purely imaginary and equal 1.0358i and 1.4135i ,
respectively. Hence, this panel corresponds to Case II.

Uniaxial Tensile Loading. Measuredv and u-displacement
fields induced by a remote tensile stress ofsy

`590.3 MPa~13,100
psi! are shown in Figs. 2~a! and 3~a!, respectively. These image
were obtained using a fringe multiplication technique~@6#!, result-
ing in an effective grating frequency of 197 lines/mm~5000 lines/
in.!. This frequency corresponds to a displacement measurem
resolution of 5.08mm. The corresponding predicted displaceme
fields are plotted in Figs. 2~b–d! and 3~b–d!. The predicted dis-
536 Õ Vol. 67, SEPTEMBER 2000
in
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placement fields are all essentially identical, and closely resem
the measured moire´ patterns. Also, numerical comparison of pr
dicted displacements, strains, and stresses at the poin~x
5377 mm, y51085 mm!, a point picked randomly from among
the nodal point positions in the finite element method mesh
made in Table 1. Excellent agreement is obtained in all cases.
concluded that, for this loading condition and material syste
stacking sequence, predictions obtained using the original S
solution, the revised solution, and the finite element meth
analysis are all essentially equivalent.

Pure Shear Loading. Comparisons between predictedv and
u-displacement fields caused by a remote pure shear stres
txy

` 517.2 MPa~2500 psi! are made in Figs. 4 and 5, respective
~as previously mentioned, experimental results are not availa
for a pure shear loading!. In these figures the~simulated! fringe
Transactions of the ASME



Fig. 9 „a… u -displacement fringe pattern for a †0ÕÁ45Õ90‡s
glass-epoxy panel containing a 25.4-mm-dia circular hole, sub-
jected to txy

` Ä17.2 MPa, predicted according to the original
Savin solution „resolution Ä2.76 mm…. „b… u -displacement fringe
pattern for a †0ÕÁ45Õ90‡s glass-epoxy panel containing a 25.4-
mm-dia circular hole, subjected to txy

` Ä17.2 MPa, predicted ac-
cording to the revised solution „resolution Ä1.38 mm…. „c…
v -displacement fringe pattern for a †0ÕÁ45Õ90‡s glass-epoxy
panel containing a 25.4-mm-dia circular hole, subjected to txy

`

Ä17.2 MPa, predicted by the finite element method „ANSYS…

analysis „resolution Ä1.38 mm….
h
t
h
g

F
d

patterns correspond to a resolution of 0.833mm. Both figures
contain images which were~a! predicted by the original Savin
solution, ~b! predicted by the revised solution, and~c! predicted
using ANSYS. A careful inspection of these figures reveals t
for this loading condition the displacement fields predicted by
original Savin solution differs markedly from that predicted by t
revised solution and the finite element method analysis. In Fi
the differences are particularly noticeable at the 12 o’clock an
o’clock positions around the hole circumference, whereas in
5 the differences are most noticeable at the 3 o’clock an
o’clock positions. The discrepancy is further highlighted by a n
merical comparison of predicted displacements, strains,
stresses, again at the far-field point~x5599 mm, y5161 mm!.
This comparison is made in Table 2. It is seen that predic
strains and stresses are identical in all cases, but the displacem
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Table 4 Comparison of the predicted response at the point x
Ä599 mm, yÄ161 mm for a †0ÕÁ45Õ90‡s glass-epoxy panel con-
taining a 25.4-mm-dia circular hole, subjected to txy

`

Ä17.2 MPa „2500 psi …

Savin Revised ANSYS

u (mm) 0.396 0.156 0.156
v (mm) 20.295 0.544 0.544
sx (MPa) 20.03 20.03 20.03
sy (MPa) '0 '0 '0
txy (MPa) 17.2 17.2 17.2
«x (mm/m) 21 21 21
«y (mm/m) 0 0 0
gxy (mrad) 1940 1940 1940
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predicted by the original Savin solution do not agree with pred
tions based on the revised solution or the finite element met
analysis.

Composite Panel With Complex Roots
The material properties for the glass-epoxy panel studied

~@7#! were reported to beExx525.9 GPa~3.75 Msi!, Eyy519.5
GPa~2.83 Msi!, Gxy58.89 GPa~1.29 Msi!, andnxy50.36. The
roots (s1 ,s2) of the characteristic equation for this material a
complex and equal20.169811.0594i and 0.169811.0594i , re-
spectively. Hence, this panel corresponds to Case I.

Uniaxial Tensile Loading. The measuredv-displacement
field induced by a remote tensile stress ofsy

`5198 MPa~28,700
psi! is shown in Fig. 6~a!. This image was obtained using a gra
ing frequency of 39.4 lines/mm~1000 lines/in.! corresponding to a
measurement resolution of 25.4mm. The corresponding predicte
displacement fields are plotted in Figs. 6~b–d!. If a resolution of
25.4mm is used to plot the fringe patterns predicted by the or
nal Savin solution, the resulting fringes are too dense to be p
ted. For present purposes the displacement fields predicted b
original Savin solution~Fig. 6~b!! have therefore been generate
based on a reduced resolution of 50.8mm. The fringe patterns
predicted by the revised solution and the finite element met
analysis~Figs. 6~c,d!! have been generated using a resolution
25.4 mm. Excellent agreement was achieved between predict
based on the revised solution and the finite element method an
sis, and furthermore these results closely resemble the experi
tal fringe pattern. In contrast, the displacement field predicted
the original Savin solution is grossly distorted, since rigid-bo
rotations have not been properly accounted for, as previo
discussed.

The transverseu-displacement field was not measured in~@7#!.
A comparison between predictedu-displacement fields is made i
Figs. 7~a–c!. Once again, excellent agreement is achieved
tween the revised solution and the finite element method anal
whereas theu-displacement field predicted by the original Sav
solution is distorted due to rigid-body rotations.

A numerical comparison of predicted displacements, stra
and stresses, again at the far-field point~x5377 mm, y
51085 mm!, is made in Table 3. It is seen that the predict
strains and stresses are identical in all cases, but the displacem
predicted by the original Savin solution do not agree with pred
tions based on the revised solution or the finite element met
analysis.
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Pure Shear Loading. Comparisons between predictedv and
u-displacement fields caused by a remote pure shear stres
txy

` 517.2 MPa~2500 psi! are made in Figs. 8 and 9, respective
~as previously mentioned, experimental results are not availa
for a pure shear loading!. In Figs. 8~a! and 9~a! the simulated
fringe patterns correspond to a resolution of 2.76mm, whereas in
Figs. 8~b,c! and 9~b,c! the resolution was increased to 1.38mm.
As before, a lower resolution was required to plot the fringe p
tern predicted by the original Savin solution. Also as before,
revised solution and the finite element method analysis are
close agreement, and differ substantially from predictions ba
on the original Savin solution. A numerical comparison that co
firms these discrepancies is made in Table 4.

Summary and Conclusions
The classical Savin solution for the stress induced in an ort

tropic plate containing an elliptical hole places no restrictions
remote rigid-body rotations. In this paper the Savin procedur
used to obtain a solution for which remote rigid-body rotations
required to be zero. The validity of the revised solution is de
onstrated by comparing predicted displacement fields induce
composite panels with those measured using geometric moir´ as
well as those predicted using the finite element method.

It is concluded that stress and strain fields are properly p
dicted by the original Savin solution in all cases. This would
expected, since the stress boundary conditions were satisfie
the original solution formulated by Savin. However, in most ca
the displacements inferred from the original Savin solution
incorrect, in the sense that the predicted values contain an
known level of rigid-body rotations. The only case in which di
placements inferred from the original Savin solution do not
clude rigid-body rotations is for specially orthotropic panels w
purely imaginary roots, subjected to remote in-plane norm
stresses only~i.e., whentxy

` 50!.
The revised solution presented herein can be used to accur

predict the stress, strain and displacement fields induced in
orthotropic panel containing an elliptical hole and subjected
any combination of remote in-plane stresses,sx

` , sy
` , andtxy

` .

Appendix

Expressions for the four constantsB* , C* , B8* , andC8* are
listed below:
B8* 5
1

2D
$@2a11us1uus2u~3a1a2

223a1
2a21a2b1

22a1b2
2!1a22~22a2

322a2b2
212a1b1

212a1
3!#txy

1@a11us1u2us2u~3a2
224a1a21b1

22b2
21a1

2!1a22~a1
42a2

2b1
22b1

2b2
213a1

2b2
224a1a2b2

21b1
413a1

2a2
212a1

2b1
224a1a2

3!

12a26us1uus2u~a22a1!#sy1@a11us1uus2u~3a2
22b2

223a1
21b1

2!1a22~2a2
22b2

21a1
21b1

2!22a16us1uus2u~a22a1!#sx% (A1)

B* 5
1

2D
$2@2a11us1uus2u~3a1a2

223a1
2a21a2b1

22a1b2
2!1a22~22a2

322a2b2
212a1b1

212a1
3!#txy

1@a11us1uus2u2~3a1
224a1a21b2

22b1
21a2

2!1a22~a2
42a1

2b2
22b1

2b2
213a2

2b1
224a1a2b1

21b2
413a1

2a2
212a2

2b2
224a1

3a2!

12a26us1uus2u~a12a2!#sy2@a11us1uus2u~3a2
22b2

223a1
21b1

2!1a22~2a2
22b2

21a1
21b1

2!22a16us1uus2u~a22a1!#sx% (A2)

C8* 5
1

2b2D
$@a11us1uus2u~2a1a2

323a1
2a2

21a2
2b1

226a1a2b2
21a1

412a1
2b1

21b1
413a1

2b2
22b1

2b2
2!

1a22~b2
42a2

42a2
2b1

222a1
3a222a1a2b1

213a1
2a2

213a1
2b2

22b1
2b2

2!#txy1@a11us1u2us2u~a2
322a1a2

21a1
2a21a2b1

223a2b2
2

12a1b2
2!1a22~2a1

4a22a2
3b1

212a1b2
42a2b1

422a1a2
42a2b1

2b2
213a1

2a2b2
213a1

2a2
322a1

2a2b1
2!

1a26us1uus2u~a2
222a1a21b1

21a1
22b2

2!#sy1@a11us1uus2u~a2
323a1

2a21a2b1
223a2b2

212a1
312a1b1

2!

1a22~2a2b2
22a2

32a2b1
22a1

2a212a1b2
212a1a2

2!2a16us1uus2u~a2
222a1a21b1

21a1
22b2

2!#sx% (A3)
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C* 5
1

2b1D
$@a11us1uus2u~2a1

3a223a1
2a2

21a1
2b2

226a1a2b1
21a2

412a2
2b2

21b2
413a2

2b1
22b1

2b2
2!

1a22~b1
42a1

42a1
2b2

222a1a2
322a1a2b2

213a1
2a2

213a2
2b1

22b1
2b2

2!#txy1@a11us1uus2u2~a1
322a1

2a21a1a2
21a1b2

223a1b1
2

12a2b1
2!1a22~2a1a2

42a1
3b2

212a2b1
42a1b2

422a1
4a22a1b2

2b1
213a1a2

2b1
213a1

3a2
222a1a2

2b2
2!

1a26us1uus2u~a1
222a1a21b2

21a2
22b1

2!#sy1@a11us1uus2u~a1
323a1a2

21a1b2
223a1b1

212a2
312a2b2

2!

1a22~2a1b1
22a1

32a1b2
22a1a2

212a2b1
212a1

2a2!2a16us1uus2u~a1
222a1a21b2

21a2
22b1

2!#sx% (A4)

where

usi u5a i
21b i

2

%15a11~a1
21b1

2!~a2
21b2

2!1a22

%25a1
222a1a21a2

21b1
212b1b21b2

2

%35a1
222a1a21a2

21b1
222b1b21b2

2

D5%1%2%3.
l

n
.
2

n

l

e

for

o-

e-
pos-

nd
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Surveillance of Mechanical
Systems on the Basis of Vibration
Signature Analysis
A comprehensive experimental study is presented to assess the utility of a pro
structural health monitoring and damage detection methodology based on vibration
nature analysis of the test article. The approach uses a time-domain least-squares-
method to identify the reduced-order system matrices of an equivalent linear model w
order matches the number of available sensors. A quantification of the level of the s
nonlinearity is obtained by determining the residual nonlinear forces involved in
system dynamics. The approach is applied to an intricate mechanical system about
virtually no information was available; i.e., the system was essentially a ‘‘black box.’
using similar measurements from a reference version of the test article and two s
quently modified versions, it is shown that through the use of higher-order stati
involving the probability density functions of key system parameters, a reliable mea
of the extent of variation of the system influence functions may be obtained. The
measures of the identified quantities’ dispersion offers a practical method for quanti
the reliability of the estimated changes involved in dealing with real-world (i.e.,
noise-free) measurements that result in uncertain estimates of the physical changes
article being monitored.@S0021-8936~00!03303-1#
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1 Introduction

1.1 Motivation. An important engineering field and re
search area, which has been receiving an increasing amou
attention for many years, is the general field of structural he
monitoring. Health monitoring refers to the use of in situ nond
structive sensing and analysis of system characteristics, inclu
structural response, for the purposes of detecting changes in
underlying system which may indicate damage or degradat
Applications of this field span a very broad range of systems fr
dispersed civil infrastructure components, to high-performa
aerospace systems, to delicate medical devices.

Representative publications in this field includeMechanical
Signature Analysis~@1#! and others~@2–5#!.

1.2 Technical Challenges. While there is a definite consen
sus about the great potential of the structural health monito
field, there is also a general agreement that, in view of the num
ous considerations that influence the choice and effectiveness
structural health monitoring method~@6#!, no one approach is
likely to be suitable for dealing with all the situations and syste
that are encountered in practical cases to detect, locate and q
tify the extent of damage or deterioration in a target system. C
sequently, there is a need for a ‘‘toolkit’’ of methods to deal w
the variety of approaches required to cope with all the poten
applications.

1.3 Literature Review. The most common approach to th
problem of structural health monitoring and damage detec
through response signature analysis is by the model updating
cedure. The basic idea is to use dynamic test data~usually modal
parameters or acceleration time histories! to continually update
the stiffness distribution of a model of the structure. In practi

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
9, 1999; final revision, May 5, 2000. Associate Technical Editor: A. A. Ferri. D
cussion on the paper should be addressed to the Technical Editor, Professor Le
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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the model updating approach to infer damage is often an
conditioned, even nonunique, inverse problem. To overcome th
difficulties ~associated with measurement noise and other un
tainties!, researchers have made advances through the use o
tistical approaches~@7–9#!. Although some research has been co
ducted using nonparametric modeling~artificial neural networks,
etc.! for the health monitoring problem, it has proven difficult
locate and quantify damage from nonparametric system mod
Therefore, almost all of the work in this area has involved,
some form or other, the modeling of systems with an equival
linear model through least-squares-based identification meth
Notable contributions in this class of approaches include Ag
bian et al.@10#, Ghanem and Shinozuka@11#, Loh and Tou@12#,
and Juang et al.@13#. In addition, experimental application studie
include Farrar and Jauregui@14#, Zimmerman et al.@15#, Loh and
Wu @16#, and Shinozuka and Ghanem@17#. Most damage detec
tion studies have concentrated on off-line~i.e., batch mode! iden-
tification, but progress has also been made in the on-line iden
cation and damage detection problem~which is useful for real-
time active control applications! for general dynamic system
~@18–20#!.

1.4 Scope. This paper is focused on the development a
implementation of a diagnostic approach for monitoring the c
dition of intricate mechanical systems on the basis of vibrat
signature analysis. While the proposed method is applicable
general structural systems, it is ideal for situations where the c
plexity or the inaccessibility of the target system components p
cludes the use of traditional parametric system identification
proaches for model-based diagnostic applications. In this pap
system identification technique will be explored not only wi
regard to its dynamic response modeling capabilities, but also
its usefulness in the context of damage detection or health m
toring. The effectiveness of the approach is studied by analyz
actual experimental dynamic response data from an unkn
physical system at various stages of structural modification.

This study is focused on evaluating a time-domain approach
determining an optimum reduced-order linear as well as nonlin
system from vibration response measurements. The nonli
component of the dynamic response is not treated as residua
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ror, but rather as a significant component of the system’s
sponse, which may be more sensitive to certain classes of dam
and deterioration. Section 2 of the paper presents an overvie
the formulation of the approach. Section 3 describes the exp
mental setup, instrumentation, and preliminary data process
Section 4 applies the proposed approach to three physical sys
with intentional variation in their internal components. Section
discusses the results and indicates the potential advantages a
as the limitations of the methodology.

2 Formulation of Time-Domain Identification Ap-
proach

2.1 Overview of Time-Domain Identification of Equivalent
System Matrices. Consider a discrete nonlinear multi-degre
of-freedom system which is subjected to directly applied exc
tion forcesf1(t) as well as prescribed support motionsx0(t). The
motion of this multi-input/multi-output nonlinear system is go
erned by the set of equations

M11
e ẍ1~ t !1C11

e ẋ1~ t !1K11
e x1~ t !1M10

e ẍ0~ t !

1C10
e ẋ0~ t !1K10

e x0~ t !1fNL~ t !5f1~ t !, (1)

where f1(t)5an n1 column vector of directly applied forces
x(t)5(x1(t),x0(t))T5system displacement vector of order (n1
1n0); x1(t)5active degree-of-freedom displacement vector
order n1 ; and x0(t)5prescribed support displacement vector
ordern0 ; M11

e , C11
e , K11

e 5constant matrices that characterize t
inertia, damping, and stiffness forces associated with the un
strained degree-of-freedom of the system, each of ordern13n1 ;
M10

e , C10
e , K10

e 5constant matrices that characterize the iner
damping, and stiffness forces associated with the support mot
each of ordern13n0 ; and fNL(t)5an n1 column vector of non-
linear nonconservative forces involvingx1(t) as well asx0(t).
This section is concerned with a time-domain method for the id
tification of the system matrices appearing in Eq.~1! as well as the
nonlinear forces acting on the system. The representation of
identified system will be in a form that allows the prediction of
transient response under arbitrary excitations, by using con
tional numerical techniques for initial value problems in ordina
differential equations.

Consider a linearized version of the system under discus
and assume it is governed by

M11
e ẍ1~ t !1C11

e ẋ1~ t !1K11
e x1~ t !1M10

e ẍ0~ t !

1C10
e ẋ0~ t !1K10

e x0~ t !5f1~ t !. (2)

Let the response vectorr (t) of order 3(n11n0) be defined as

r ~ t !5~ ẍ1
T~ t !,ẋ1

T~ t !,x1
T~ t !,ẍ0

T~ t !,ẋ0
T~ t !,x0

T~ t !!T. (3)

Introducing matrixR
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R5F rT~ t1!

rT~ t2!

]

rT~ tN!

G (4)

and using the notation above, the grouping of the measurem
can be expressed concisely as

R̂â5b̂ (5)

whereR̂ is a block diagonal matrix whose diagonal elements
equal toR, â5@a1

T ,a2
T , . . . ,an1

T #T and b̂ is the corresponding
vector of excitation measurements. Keeping in mind thatR̂ is of
orderm3n wherem5Nn1 , andn53n1(n11n0), then if a suf-
ficient number of measurements is taken, this will result inm
.n. Under these conditions, least-squares procedures can be
to solve for all the system parameters that constitute the entrie
â:

â5R̂†b̂ (6)

whereR̂† is the pseudo-inverse ofR̂ ~@21#!. In the more general
case where the measurements associated with certain degre
freedom are more reliable than others and/or measurements a
mulated over certain time periods are to be emphasized differe
from the others, a symmetric, nonsingular, usually diagonal e
weighting matrixW can be used with the overdetermined set
equations in Eq.~5!, thus resulting in the approximate solutio
~@22#!

â5~R̂TWR̂!21R̂TWb̂. (7)

2.2 Application to Example Four-Degree-of-Freedom Sys-
tem With a Single Excitation. Consider an example four
degree-of-freedom system governed by

Mÿ ~ t !1Cẏ~ t !1Ky ~ t !5g~ t !. (8)

For clarity of presentation~simplified subscript notation! vectory
is used to represent the system’s absolute displacementx1(t), and
g(t) is used to represent the excitationf1(t). It is assumed that no
support motion is involved~i.e., x0(t)50!. Furthermore, matrices
M11, C11, and K11 are denoted byM , C, and K , respectively.
Noting that in this casen154 andn050, in expanded form Eq.
~8! becomes

mi1ÿ11mi2ÿ21mi3ÿ31mi4ÿ41ci1ẏ11ci2ẏ21ci3ẏ31ci4ẏ4

1ki1y11ki2y21ki3y31ki4y45gi~ t ! i 51,2,3,4. (9)

Note that the response vectorr (t) in this case is

r ~ t !5@ ÿ1 ,ÿ2 ,ÿ3 ,ÿ4 ,ẏ1 ,ẏ2 ,ẏ3 ,ẏ4 ,y1 ,y2 ,y3 ,y4#T. (10)

If response measurements at timest1 ,t2 , . . . ,tN are made, then
the observation matrixR becomes
R5F ÿ1~ t1! ÿ2~ t1! ÿ3~ t1! ÿ4~ t1! ẏ1~ t1! ẏ2~ t1! ẏ3~ t1! ẏ4~ t1! y1~ t1! y2~ t1! y3~ t1! y4~ t1!

ÿ1~ t2! ÿ2~ t2! ÿ3~ t2! ÿ4~ t2! ẏ1~ t2! ẏ2~ t2! ẏ3~ t2! ẏ4~ t2! y1~ t2! y2~ t2! y3~ t2! y4~ t2!

ÿ1~ t3! ÿ2~ t3! ÿ3~ t3! ÿ4~ t3! ẏ1~ t3! ẏ2~ t3! ẏ3~ t3! ẏ4~ t3! y1~ t3! y2~ t3! y3~ t3! y4~ t3!

] ] ] ] ] ] ] ] ] ] ] ]

ÿ1~ tN! ÿ2~ tN! ÿ3~ tN! ÿ4~ tN! ẏ1~ tN! ẏ2~ tN! ẏ3~ tN! ẏ4~ tN! y1~ tN! y2~ tN! y3~ tN! y4~ tN!

G (11)
the

tion
and then154 parameter vectorsa1 , a2 , a3 , anda4 are

ai5@mi1 ,mi2 ,mi3 ,mi4 ,ci1 ,ci2 ,ci3 ,ci4 ,ki1 ,ki2 ,ki3 ,ki4#T

i 51,2,3,4. (12)
Note from Eq.~11! that the number of rows inR is equal toN, the
number of time samples used to observe the response, and
number of columns ofR equals three timesn1 , wheren154, is
the number of the system degrees-of-freedom. The excita
measurementsb1(t), b2(t), b3(t), andb4(t) are
SEPTEMBER 2000, Vol. 67 Õ 541
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bi~ t !5@gi~ t1!,gi~ t2!, . . . ,gi~ tN!#T i 51,2,3,4. (13)

If a number N>3n1 of time sample measurements is used
constructR in the manner indicated in Eq.~11!, then one obtains

R̂â5b̂ (14)

where

R̂5F R 0 0 0

0 R 0 0

0 0 R 0

0 0 0 R

G , â5F a1

a2

a3

a4

G , b̂5F b1

b2

b3

b4

G (15)

or alternatively

Rai5bi , i 51,n1 . (16)

Note that the order ofR is (N33n1), the order ofai is (3n1
31), and the order ofbi is (N31). Now if noneof the excitation
forces is identically equal to zero, then the rank ofR is rank(R)
53n1 , and least-squares methods can be used in the manne
cussed above to uniquely determineâ:

â5R̂†b̂, (17)

or

ai5R†bi , i 51,n1 . (18)

On the other hand, ifoneof the excitation forces, e.g.,g2(t)50,
542 Õ Vol. 67, SEPTEMBER 2000
to

dis-

then the number of independentcolumnsof R is (3n121). This
fact can be easily established from Eq.~9! with i 52, since the
RHS being zero indicates that the 12 measureme
ÿ1(t),ÿ2(t),ÿ3(t),ÿ4(t), . . . ,y1(t),y2(t),y3(t),y4(t) are linearly
dependent. The rank ofR in this situation becomes rank(R)
53n121.

Returning to the example under discussion, it is clear that
lessall components of the excitation vectorg(t) areÞ0, the rank
of R will be less than the dimension of the corresponding para
eter vectora, consequently the system parameterâ cannot be
uniquely determined. In general, for ann1 degree-of-freedom sys
tem governed by Eq.~2!, the rank ofR is

rank~R!53~n11n0!2~n12nf ! (19)

wherenf5the number of active~nonzero! components of the ex-
citation vector. Thus, unlessnf5n1 , the 3n1(n11n0) compo-
nents of the system parameter vectorâ cannot be uniquely deter
mined without imposing some restrictions~such as symmetry! on
the nature of components.

Later in the experimental phase of this study, the symme
restriction on the system matrices will be imposed because
excitation forces are not applied to all of the degrees-of-freed
The implementation of this still involves the basic least-squa
solution of the formR̂â5b̂ but here theR̂ and theâ ~which will
have fewer parameters! will be organized in a special way. In thi
case specifically, where only degree-of-freedom #4 is directly
cited, theR̂â5b̂ expression which guarantees symmetric syst
matrices will be written as follows:
Transactions of the ASME
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Due to space limitations, theR̂ matrix is not written more explic-
itly; however, each row in this expression is meant to repres
multiple rows corresponding to the considered time steps. In o
words each element is a column vector, for exampley1

5@y1(t1),y1(t2), . . . ,y1(tN)#T. Notice also that, because the co
straint of symmetric system matrices is imposed, theâ vector has
only 30 parameters as opposed to the full 48 which would n
mally describe the generalM , C, and K matrices for a four-
degree-of-freedom linear system.

2.3 Identification of Nonlinear Residual Terms. Once the
linear portion of the system response has been identified, ther
several approaches using hybrid~parametric/nonparametric! iden-
tification techniques which can be used to identify the nonlin
residual response. For example, the residual could be least-sq
fitted in much the same way as done previously, however, wi
set of basis functions generated from a series expansion of va
products ofx(t), ẋ(t), and ẍ(t) system response terms~@23#!.
Alternatively, the authors have found artificial neural netwo
identification approaches to be quite effective in identifying no
linear system dynamics~@23,24#!. Further background information
and references on the use of neural networks to model sys
dynamics can be found in Housner et al.@6#.

Fig. 1 ‘‘Black box’’ experimental mechanical system with
single force input and four acceleration outputs

Fig. 2 The first 1000 samples „or 0.122 seconds … for each
channel from the ‘‘black box’’ experimental reference data set
Journal of Applied Mechanics
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3 Experimental Data Sets

3.1 Experimental Setup. The test article is a mechanica
system composed of numerous internal components and mate
with significant nonlinear characteristics. Information concern
the system’s shape, size, material, location of sensors, etc.,
not available. Therefore the test situation is as close as one w
get to a ‘‘black box’’ experiment. The system was monitored
means of four accelerometers and a single force gauge in
proximity of one of the sensors. A block diagram of the dynam
system representation is shown in Fig. 1, indicating one input
four outputs. The excitation source consisted of an electrodyna
exciter which furnished a wide-band excitation to the syste
Note that the proposed monitoring approach imposes no res
tions on the test signal, provided it is persistent enough to yield
applicable mathematical model.

3.2 Data Acquisition. The sensor data was digitall
sampled and recorded at a rate of 8192 Hz, in other words e
1.220431024 seconds. The total duration of the recordings w
2.5 seconds, thus resulting in 20,480 samples per recording c
nel. A sampling of the unprocessed recorded data is shown in
2. It can be clearly seen from Fig. 2 that the frequency conten
the force record most clearly resembles that in the accelera
record of channel #4. Therefore it is not surprising to find that
force is applied at the channel #4 location.

3.3 Preliminary Data Processing. Before doing any sys-
tem identification analysis, the supplied data was further p
cessed to obtain the displacement and velocity records co
sponding to the available acceleration records. The sugge
frequencies of interest were also given to be above 150 Hz
therefore high-pass filtering was also performed. The follow
step-by-step approach was adopted for the integration proce
from acceleration to velocity and then to displacement:~1! high-
pass filter the acceleration record,~2! numerically integrate the

Table 1 The four equivalent linear identification cases and
their parameters for the analysis of the reference system data

Table 2 Estimates of equivalent linear system matrices for
Case 1
SEPTEMBER 2000, Vol. 67 Õ 543
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Fig. 3 Comparison of scaled estimates of system matrices for reference
system—Cases 1 through 4

Fig. 4 Time history comparison of excitation force „solid line …, linear least-squares estimated
force „dashed line …, and the nonlinear residual force „thick line … for Case 1 identification of the
reference system
, SEPTEMBER 2000 Transactions of the ASME



Journal of Ap
Fig. 5 Time history comparison of the nonlinear residual force „solid line … and the re-
sidual force estimate „dashed line …, modeled with combinations of x „t …, ẋ „t …, and ẍ „t … up
to third-order powers for the reference system

Fig. 6 Sample identification results for the reference system corresponding to „a… m 11 ; „b… c 11 ;
„c… k 11 . In each plot, the dashed line represents the mean value of the parameter.
plied Mechanics SEPTEMBER 2000, Vol. 67 Õ 545
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Fig. 7 Sample identification results for k 11 corresponding to „a… the reference system „system
#1…; „b… system #2; „c… system #3. In each plot, the dashed line represents the mean value of the
parameter.
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resulting processed acceleration,~3! high-pass filter the result,~4!
numerically integrate the processed velocity, and~5! high-pass
filter the result. Note that the high-pass filtering at each stage ta
care of the removal of a nonzero offset or linear trend often
quired after integration of acceleration records. The pass-band
tering was performed with no phase distortion.

As previously mentioned, the experiments were conduc
three times with the same test configuration and amplitude
excitation. The test organization reported that structural modifi
tions were made between tests. Therefore this collection of
provides an excellent platform to perform health monitori
analysis to detect system changes. The data from System #1
be referred to as the reference system, and more in depth ana
done on this system is reported in the following section.

4 Analysis of Reference System

4.1 Identification of System Matrices. Using the formula-
tion of Section 2, the optimum equivalent system matrices and
residual nonlinear force, based on the assumption of a single
citation and three symmetric system matrices, was determi
The least-squares identification was performed four times w
, SEPTEMBER 2000
kes
re-
fil-

ted
of

ca-
ata
g
will
lysis

the
ex-
ed.
ith

different numbers of time samples used for each case. Tab
shows the four cases and the corresponding time samples u
Note that increasing the number of points used in the least-squ
solution changes the aspect ratio~i.e., an increase in the number o
rows! of the R̂ observation matrix, and hence leads to a mo
overdetermined set of linear equations.

The resulting system matrix estimates for Case 1 from the le
squares fitting process are shown in Table 2. Similar results
obtained for Cases 2–4~@23#!. The first noticeable feature of thes
dynamic system matrices is the presence of negative terms a
the diagonal of the matrices, in other words, the matrices are
positive-definite. Of course, negative mass, negative damping
negative stiffness does not~physically! exist. These fictitious
terms are attributable to the equivalent linearization of nonline
ties. This difficulty is quite intuitive, i.e., that physically unusu
terms may arise from an equivalent linear fitting of a tru
nonlinear system response. Other than noticing the nonpos
definiteness of the identified system matrices, little intuitive se
can be gained from the listing of the matrix coefficients. The
fore, an alternative representation follows in Fig. 3. Here the e
ments of the system matrices have been scaled columnwis
Transactions of the ASME
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Fig. 8 Probability densities of stiffness matrix coefficients for 150 statistical averages of
the equivalent linear identification of the three different systems. System #1 „solid line …,
system #2 „dotted line …, system #3 „dash-dot line ….
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multiplying by the maximum value of the response variable
which they correspond.

This figure better illustrates the similarity in the estimated s
tem influence coefficients obtained using different numbers of
crete samples in the least-squares solution. One may conc
that for this system response, 1000 points~corresponding to abou
30 periods of the lowest dominant frequency! is sufficient to ob-
tain an accurate equivalent linear system estimate. One may
conclude that the response over the duration of the measurem
is reasonably stationary, because the estimates vary little dep
ing upon the window length used for fitting. Under more suita
conditions for the application of this method~@10#!, natural fre-
quency and damping estimates could be obtained from the c
plex eigenvalue solution associated with the estimated linear
tem equation. However, due to the nonpositive definiteness o
estimated system matrices in this case, this proved to be fu
From the poor physical interpretation of the coefficients in
linear system matrices one may conclude that the linear sys
model could not accurately capture the true dynamics of
system.

4.2 Determination of Nonlinear Residual Force fNL .
From the results of the previous section, a best-fit linear forcefL

e

may be determined for each set of estimated parameters. Ta
the difference of this from the excitation forcef1(t), as in Eq.~1!,
a nonlinear residual forcefNL is obtained:
d Mechanics
to
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is-
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king

fNL~ t !5f1~ t !2fL
e~ t !5f1~ t !2Meẍ~ t !2Ceẋ~ t !2Kex~ t !.

(21)

A representative time history comparison~from the Case 1 es-
timation! of the excitation forcef4 , the linear estimate, and th
nonlinear residual is shown in Fig. 4. Clearly, the fitting resu
are quite good—the large as well as small peaks are well e
mated and all frequencies are tracked fairly accurately.

For the Case 1 simulation, which involved a least-squares
with 1000 points, the norm of the dimensionless error ratio
15.33 percent. Comparable error values are obtained for C
2–4. It is worth noting that the nonlinear component is not ju
‘‘noise,’’ but contains a characteristic signature of the underlyi
system nonlinearities. Sophisticated analysis of this compon
may aid in understanding the physics of the nonlinear sys
characteristics~@25#!. It is noteworthy that the testing organizatio
that furnished the data stated that the article incorporated com
nents with significant nonlinear characteristics. Furthermore,
fact that fNL is not random noise, but rather a highly correlat
nonlinear function of the system response is demonstrated in
5. Using the nonparametric approach of Smyth@23#, it is seen that
fNL can be reasonably estimated by a series of nonlinear funct
involving primarily the physical system accelerations and velo
ties as basis functions. Note that for added resolution, the sca
the ordinate in Fig. 5 is about five times more sensitive than
corresponding scale of Fig. 4.
SEPTEMBER 2000, Vol. 67 Õ 547
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Fig. 9 „a… Probability densities of the k 11 stiffness coefficient for 150 statistical
averages of the equivalent linear identification of the three different systems. Each
plot has a superimposed Gaussian distribution. „b… System #1 „thin solid line …,
system #2 „dotted line …, system #3 „thick solid line … comparison.
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To further support the assertion, that the residual is the resu
response nonlinearities~and of course, measurement noise!, rather
than unmodeled linear dynamics, the entire system was also m
eled using the Observer Kalman Filter Identification~OKID!
method ~@13#! and an assumed linear model with 20 gene
modes. The rms of the residual, was only reduced by a fractio
a percent from the rms of the residual obtained with a four-m
linear model~similar to that used in this study!. In other words,
increasing the fidelity of the linear model aids little in reduci
the residual component of the response. It should be noted,
other techniques, which rely on the comparison between the
bert Transform of the system dynamics and the frequency
sponse function, can also be employed to indicate the presen
nonlinearities~@26,27#!.

5 Detection of Changes in System Parameters
In this section, the identification results from the reference s

tem are compared with results obtained from the same method
Systems #2 and #3. The test organization stated that these sy
are~physically! modified versions of the reference system, i.e.,
detection results of this study are not associated with ‘‘false p
tive’’ indications. The goal of this section is to evaluate the ide
tification method for its usefulness as a structural health moni
ing tool.
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5.1 Comparison of PDF’s of Influence Coefficients. The
equivalent linear analysis was repeated for all three systems, h
ever, this time statistical averaging was used to get a sense o
distribution of the system matrix coefficients. This statistic
analysis could provide a means to assess and calibrate the s
tivity of identification approaches to detect, locate and quan
levels of structural changes. The averaging was conducted u
150 time history windows, of 2000 points each, staggered by
points each time. Figure 6 shows representative samples ofm11

e ,
c11

e , and k11
e corresponding to the reference system. The me

value of each parameter is indicated by a dashed line. Note
the fluctuation in the values of the identified parameters have
appearance of a random process. Similar results are obtaine
all the identified influence coefficients.

Figure 7 shows representative samples ofk11
e corresponding to

the reference system and the other two modified systems. For
of comparison, identical scales are used in the three plots sh
in Fig. 7. Note that the dashed lines, which indicate the me
values of the respective parameters, show a significant chang
the mean value ofk11 among the three tested systems. Furth
more, it is worth noting that the level of the dispersion of t
fluctuations with respect to their respective mean shows a ma
difference among the three systems.

Figure 8 shows the probability densities of the coefficients
Transactions of the ASME
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Fig. 10 „a… Probability densities of the k 24 stiffness coefficient for 150 statistical
averages of the equivalent linear identification of the three different systems. Each
plot has a superimposed Gaussian distribution. „b… System #1 „solid line …, system
#2 „dotted line …, system #3 „dash-dot line … comparison.
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the estimated stiffness matrices for all three systems. Although
distributions appear somewhat rough due to the relatively sm
number~150! of statistical averages taken, one can see strik
differences in the mean values of the coefficients, and often
ferences in the variance of the estimated coefficients. The s
line, representing the density of the estimated coefficients for
reference system, generally shows greater variance than the
two-system parameter estimates. It is difficult to pinpoint t
cause of this difference, given the standardization of the test
cedure, other than to suggest that it could be related to what
pears, from the ‘‘transfer function’’ representation, to be mo
complex dynamics. Note that similar results were obtained for
mass and damping matrix coefficient estimates.

Figure 8 contains a large amount of comparative information
the identification results for the reference and the two modifi
systems. It is helpful, however, to focus on individual eleme
and how their identified values change with respect to the sys
modifications. Figure 9 highlights the differences between
identified results for thek11

e stiffness term. As is shown in the
previous figure, the solid line in the top three plots shows
probability distributions of the identifiedk11

e values over 150 iden-
tifications of partially overlapping response segments. This ti
however, an equivalent Gaussian distribution with the mean
standard deviation of the identification results is superimpo
over the actual~experimental! results. These distributions are the
echanics
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compared in the lower plot in Fig. 9. This type of figure clear
shows the shift in the average identified result for the three id
tified systems, as well as showing a variation in the level of u
certainty associated with the identified values. It is important
note here that, because all of the experiments were conducted
the same level of input excitation and presumably noise levels
the measurements, it is justifiable to make these kind of comp
sons across experiments. A similar comparison of the statist
results for the identification of coefficientk24

e ~which is of course
the same ask42

e because of the prescribed symmetry assumpti!
is shown in Fig. 10. Again, variations in the standard deviation
the identified results can be clearly seen; however, there is on

Table 3 The mean value of the equivalent linear system stiff-
ness matrix for the reference system „i.e., system #1 …, and its
standard deviation over the 150 identification cases
SEPTEMBER 2000, Vol. 67 Õ 549
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minor change in the average identified coefficient between
reference system~i.e., system # 1! and system #2.

A summary of the identification results for the three system
shown in Tables 3 and 4. The numerical values for the follow
matrices are given:~1! the mean identified stiffness matricesK̄e;
~2! the standard deviation matrixS of the identified stiffness ma
trix; ~3! the matrixV whose elements correspond to the dime
sionless error between the mean of the identified values for
modified system with the ‘‘undamaged’’ reference system; and~4!
the matrixD whose elements correspond with the dimensionl
change in the mean of the identified values for the modified s
tem with respect to the reference system expressed as a mu
of the corresponding standard deviation. In other words the c
ficients ofV andD are defined as follows:

v i j 5~ k̄i j
e 2 k̄i j

~0!!/ k̄i j
~0! and di j 5~ k̄i j

e 2 k̄i j
~0!!/ s̄i j (22)

wherek̄i j
(0) is just the mean of the effective linear stiffness coe

cient ~i.e., k̄i j
e ! obtained for the identification of the reference sy

tem. Notice, for example, the small value ofv24 for system #2
relative to that for system #3, and how it captures the nature of
lower plot in Fig. 10. It should of course be noted that these ty
of results on the change in mean and standard deviation are
available for the identified mass and damping coefficients.

6 Discussion
To better calibrate and evaluate the sensitivity to detec

slight changes in the system parameters for this type of met
there is still a need for knowledge of the nature of changes m
in the test article. However, despite the lack of detailed knowle
of the structural modifications, clear changes are detected in
reduced-order equivalent linear model parameters. One of
drawbacks of the method, when applied to structural syste
which have a significant nonlinear component to their dynam
response, is that the comparison in identification results shoul
made for similar levels of broad-band excitation and with simi
levels of measurement noise.

Table 4 The mean value of the equivalent linear system stiff-
ness matrix for system #2 „left column … and for system #3 „right
column …, and the respective standard deviation over the 150
identification cases. The dimensionless error matrices are also
presented relative to the reference case.
550 Õ Vol. 67, SEPTEMBER 2000
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The time-domain identification method presented here could
slightly modified in several ways by using recursive techniques
changing the manner in which the segmentation is performed
ing the statistical averaging. Also, the level of structural nonl
earity in the ‘‘undamaged’’ structure is potentially of critical im
portance to the success of this equivalent linearization-ba
identification method. These issues and their potential for alte
the results have yet to be explored. Furthermore, in order to ga
the sensitivity of the approach under discussion to detect sl
changes in the target system, a study is needed to correlate
magnitude of the dimensionlessv i j parameters with a range o
measured changes in the test article.

7 Summary and Conclusions
An experimental study is presented to evaluate the effectiven

of a time-domain parametric identification approach for monit
ing the ‘‘health’’ of intricate, nonlinear systems. The method
approach requires the use of excitation and acceleration resp
records, to develop an equivalent multi-degree-of-freedom m
ematical model whose order is compatible with the number
sensors used. Application of the identification procedure un
discussion yields the optimum value of the elements of
equivalent linear system matrices. By performing the identifi
tion task before and after potential structural changes~damage! in
the physical system have occurred, quantifiable changes in
identified mathematical model can be detected.

The potential usefulness of the identification procedure un
discussion for damage detection is demonstrated by means of
on a complex mechanical system exhibiting significant nonlin
characteristics. This system is used to conduct experiments to
erate high-quality data sets that are subsequently analyzed to
termine the mean, variance, and probability density functions c
responding to each element of the identified system matrices
gain some insight into the reliability of the proposed detect
scheme, physically different versions of the test article were
vestigated, in which the location as well as the magnitude of
‘‘damage’’ was varied.

The method provided clear indication of structural alterati
through changes in the identified parameters. The dimension
measures likeV and D, which use the built-in uncertainty scal
furnished by the estimated variance of the identification resu
prove to be particularly useful in detecting dominant chang
Because the method presented here is a parametric identific
scheme based on a linearized model, its ability to capture
overall dynamic response of nonlinear systems is of course
ited. Further parametric or nonparametric nonlinear identificat
techniques can be employed to obtain a complete linear/nonli
dynamic model of the system dynamics by either treating the
sidual error as the nonlinear response component or by trea
the entire dynamic response generally.

On the basis of this exploratory study, it appears that determ
ing the probability density functions of the identified system m
trices may furnish useful indices, that can be conveniently
tracted during an experimental test, to quantify changes in
characteristics of physical systems without the need for virtua
any information about the topology of the system or the nature
the underlying physical phenomena that are being observed.
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Plastic Bifurcation in the Triaxial
Confining Pressure Test
Bifurcations of a circular cylinder are studied, within the context of the triaxial confin
pressure test, for pressure sensitive solids. Material response is modeled by large
versions of flow and deformation theories of plasticity in conjunction with the Druc
Prager solid. An axially symmetric deformation pattern is assumed prior to bifurca
and only diffuse modes within the elliptic regime are considered. The governing equa
are solved analytically in terms of Bessel functions and a search procedure is employ
trace bifurcation loads. Deformation theory predicts critical stresses which are con
tently below flow theory results, and provides practical upper bounds on experimen
observed values of peak stresses.@S0021-8936~00!01403-3#
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1 Introduction
The confining pressure triaxial calibration test has traditiona

served as the fundamental material characterization experime
geomechanics. The procedure centers on applying hydros
pressure on a circular cylindrical specimen, followed by incre
ing the axial component of stress up to failure. In metal plastic
Cheng et al.@1# first studied bifurcations of elastoplastic cylinde
in axisymmetric conditions for the problems of tension and co
pression. Hutchinson and Miles@2# examined necking bifurcation
of cylinders under tension for an incompressible material w
transverse anisotropy. Miles and Nuwayhid@3# extended the
analysis to include compressibility. Axisymmetric bifurcations
frictional materials were studied by Drescher and Vardoulakis@4#,
Vardoulakis @5#, and Chau@6# for various constitutive models
The Cam-Clay model has been employed in a recent bifurca
analysis by Yatomi and Shibi@7#. Sulem and Vardoulakis@8#
analyzed axisymmetric bifurcations for a polar material w
Cosserat microstructure. Chau@9# considered nonaxisymmetri
bifurcations of cylindrical specimen along with a further extens
@10# to include all higher circumferential modes. Despite an inte
sive research effort in recent years~essential studies have bee
reviewed by Vardoulakis and Sulem@11#!, the exact details of the
near failure behavior are not fully understood. Particularly,
onset of bifurcation modes and possible emergence of shear b
in the vicinity of peak stress, experimentally observed, pose m
challenges for further study. While only diffuse mode bifurcatio
are examined in this work it is worth mentioning that shear ba
ing can also be considered as a form of bifurcation from the
mary state of stress.

The present paper, which is a sequel to Papanastasiou
Durban @12#, focuses on one aspect of that calibration test:
reliability of bifurcation predictions obtained with available mat
rial models. We examine a circular cylinder strained axially
symmetrically by an all round pressure and then compressed
ally up to bifurcation. Material response is modeled by the la
strain flow and deformation theories of the Drucker-Prager t
@12#.

The governing equations are presented in the next section a
with a separation of variables representation of possible eig
modes. The system of ordinary differential equations for the ra

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Divisio
March 9, 1999; final revision, January 31, 2000. Associate Technical Editor: K
Ramesh. Discussion on the paper should be addressed to the Technical Edito
fessor Lewis T. Wheeler, Department of Mechanical Engineering, University
Houston, Houston, TX 77204-4792, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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profiles of perturbed velocities admits an analytical solution
terms of Bessel functions~Section 3! which in turn leads to a
transcendental algebraic eigenvalue equation for critical stres
Sample calculations are presented in Section 4 and compared
experimental data for two geomaterials~Castlegate sandstone an
Jurrasic shale!.

The main findings of this study confirm that deformation theo
predictions for bifurcation loads are lower than those obtain
with flow theory. The difference between the results of the t
theories increase with increasing plastification. The levels of
perimental peak stresses are below deformation theory predic
for bifurcation loads, with an average overestimation by the la
of about 9.6 percent for Castlegate sandstone and about 3.6
cent for the Jurassic shale. It would appear from that compar
that the Drucker-Prager deformation theory can provide relia
predictions in the analysis of the triaxial calibration test for pre
sure sensitive solids.

2 Problem Formulation
A circular cylinder (0<r<a,0<z< l ), is uniformly stressed by

external compressive loads which induce the primary state
stress

s rr 5suu52p szz52s (1)

with both p, s being positive. Here (r ,u,z) denote an instanta
neous Eulerian polar system of coordinates. The original, un
formed dimensions of the cylinder are (a0 ,l 0) and an axially sym-
metric strain pattern is assumed over the entire loading histor

We examine possible modes of bifurcation, along the prim
path ~1!, described by the separation of variables solution~@12#!

u5U~r !cosmu cos
kpz

l
(2)

v5V~r !sinmu cos
kpz

l
(3)

w5W~r !cosmu sin
kpz

l
(4)

where (u,v,w) are the (r ,u,z) components of the perturbed ve
locity field, ~m, k! are the corresponding wave numbers, and
radial profilesU,V,W are as yet unknown.

Material behavior is modeled by two particular cases of
family

s
¹

5L••D (5)

wheres
¹

is the Jaumann stress rate of the Cauchy stress,D is the
Eulerian strain rate, andL denotes the fourth-order tensor of in

,
. T.
, Pro-
of
nal
© 2000 by ASME Transactions of the ASME
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stantaneous moduli. Here we employ the large strain flow
deformation Drucker-Prager theories, with the effective stressse
and plastic potentialf defined by

se5Q1msh f5Q1hsh (6)

whereQ5(3/2S••S) is the Mises effective stress withS denoting
the stress deviator,sh is the hydrostatic stress and~m,h! are pres-
sure sensitive parameters. The standard Mises model is obta
with m5h50, while for associated solids in generalm5h. A
complete derivation of the instantaneous moduli tensorL, for both
flow and deformation theories which originate from~6!, has been
given in Papanastasiou and Durban@12# and here we shall jus
recapitulate the essential relations that correspond to the field~1!.
Thus, with due account of material symmetry we have the sc
specification of~5! as

s
¹

rr 5Lrr drr 1Lruduu1Lrzdzz

s
¹

uu5Lrudrr 1Lrr duu1Lrzdzz

s
¹

zz5Lzrdrr 1Lzrduu1Lzzdzz

s
¹

ru52Grudru s
¹

uz52Guzduz s
¹

zr52Guzdzr (7)

where di j ( i , j 5r ,u,z) are the Eulerian strain rate componen
The instantaneous moduliLi j , Gi j ( i , j 5r ,u,z) are defined by

Lrr 52G1l2G tNrMr Lru5Lrr 22G Lrz5l2G tNrMz

Lzr5l2G tNzMr Lzz52G1l2G tNzMz Gru5Guz5G
(8)

where (G,l) are the Lame constants, andG t is the flow theory
plastic parameter

G t5
4~G2Gt!/3

11~K/Kt21!Gt /G
(9)

with (Gt ,Kt) denoting the tangent shear and bulk moduli, resp
tively, defined as

1

Gt
5

1

G
13S se

f D dep

dse

1

Kt
5

1

K
1mhS se

f D dep

dse
(10)

K being the elastic bulk modulus, and the effective stressse is a
known function of the total plastic strainep . The plastic strain is
defined by the principle of plastic power equivalence~@13#!

ėpse5s i j ė i j
p . (11)

Also, in ~8!

Mi5
3Sii

2Q
1

mK

2G
Ni5

3Sii

2Q
1

hK

2G
i 5r ,u,z no sum

(12)

whereSii are the normal deviatoric stress components.
Likewise, the deformation theory relations are given by~7! with

Lrr 52Gs1ld2GdNrMr Lru5Lrr 22Gs

Lrz5ld2GdNrMz

Lzr5ld2GdNzMr Lzz52Gs1ld2GdNzMz Gru5Gs
(13)

Guz5Gzr5S ar
21az

2

ar
22az

2 ln
ar

az
DGs

whereGs is the secant shear modulus

1

Gs
5

1

G
1

3seep

fQ
. (14)

(ld ,Gd) are the deformation theory parameters
Journal of Applied Mechanics
nd

ined

lar

s.

c-

ld5
~12Gd /Gs!K

11~Gd /G!~K/Kd21!2~GdK !/~GsKd!
2

2

3
Gs

Gd5
~4Gs/3!@11~Gd /G!~K/Kd21!2~GdK !/~GsKd!#

11~Gd /G!~K/Kd21!
(15)

with

1

Gd
5

1

G
13F S 1

f D d~seep!

dse
2

seep

f2 G
1

Kd
5

1

K
1hF S m

f D d~seep!

dse
2h

seep

f2 G . (16)

Also in ~13!, the principal stretches in directions~r, z! are denoted
by (ar ,az), respectively, and in analogy with~12!

Mi5
3Sii

2Q
1

mdK

2Gs
Ni5

3Sii

2Q
1

hdK

2Gs
i 5r ,u,z no sum

(17)

where

md5
~3/h!Gd~1/Kd21/K !

11~Gd /G!~K/Kd21!2~GdK !/~GsKd!

hd5
h~12Gd /G!

11~Gd /G!~K/Kd21!2~GdK !/~GsKd!
. (18)

Clearly, the instantaneous moduli~7! are load dependent
though spatially homogeneous, and vary with (p,s) along the
deformation path according to the hardening~softening! response
ep(se). It is worth mentioning that the instantaneous moduli
~8! and~13! admit the identity 2Gru5Lrr 2Lru thus implying that
relations~7! resemble the stress-strain relations for transvers
isotropic elastic solids~@14#!. It is worth to observe if the degree
of strain-induced anisotropy inherent to deformation theory,~13!,
is sufficient to predict bifurcations at realistic load levels for t
triaxial validation test. Supporting the use of a noncoaxial plas
ity model for such predictions, Vardoulakis@5# claimed that the
shear modulus for the difference of radial and hoop stress in
ment Lrr 2Lru52Gs should be significantly different than th
modulus (Grz) for the shear stress increment. Apparently suc
condition can be met for deformation theory in the plastic reg
where the dependent on the stretches instantaneous modulusGrz ,
in (13)c , reduces significantly.

Inserting now the perturbed velocity field~2!–~4! in the rate
equilibrium equations~@12#!, and accounting for~7!, gives the
three equations, for the radial profilesU,V,W,

Lrr S U91
U8

r D2~Lrr 1m2Gru!
U

r 22S kp

l D 2FGuz2
1

2
~p2s!GU

1m~Lru1Gru!
V8

r
2m~Lrr 1Gru!

V

r 2 1S kp

l D
3FLuz1Guz2

1

2
~p2s!GW850 (19)

2m~Lru1Gru!
U8

r
2m~Lrr 1Gru!

U

r 2 1GruS V91
V8

r 2 D
2~Gru1m2Lrr !

V

r 22S kp

l D 2FGuz1
1

2
~p2s!GV

2mS kp

l D FLuz1Guz2
1

2
~p2s!G W

r
50 (20)
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2S kp

l D FLzr1Guz1
1

2
~p2s!G S U81

U

r
1m

V

r D
1FGuz2

1

2
~p2s!GLm~W!2S kp

l D 2

LzzW50 (21)

where the prime denotes differentiation with respect tor, and
Lm(•) is the Bessel operator

Lm~• !5~• !91
~• !8

r
2m2

~• !8

r 2 . (22)

These equations are supplemented by the conditions of vanis
traction rates, atr 5a, which take here the form

Lrr U81Lru

U

r
1mLru

V

r
1S kp

l DLuzW50

2m~Gru1p!
U

r
1GruV82~Gru1p!

V

r
50 (23)

2S kp

l D FGuz1
1

2
~p1s!GU1FGuz2

1

2
~p2s!GW850.

At the facesz50,l we have by~2!–~4! that the axial velocityW
and the shear traction rates vanish~@12#!.

Thus, the problem lies in solving the eigensystem~19!–~21!
along with the boundary data~23!. Axially symmetric modes are
recovered from the general solution withm50 andV50.

3 Continuous Eigenfunctions
Equations~19!–~21! resemble, for any loading state (p,s), the

analogous equations for transversely isotropic cylindrical tu
~@14#!. Accordingly, available analytical solutions~e.g.,@15#! can
be adapted, as in Chau@6#, to facilitate a closed-form solution o
the governing equations. For the sake of completeness, how
we summarize here the essential details of a solution method

Motivated by the Bessel-like structure of Eqs.~19!–~21! we
seek solutions of the form

U5m
F1

r
V52F18 (24)

whereF1 is an unknown function ofr.
Inserting~24! in ~19!–~21!, respectively, we get the equation

mFLm~F1!2S kp

l D 2

g1
2F1G1S kp

l Da0rW850 (25)

Lm8 ~F1!2S kp

l D 2

g1
2F181mS kp

l Da0

W

r
50 (26)

b1Lm~W!2S kp

l D 2

W50 (27)

where

g1
25

Guz1~p2s!/2

Gru
a05

Luz1Guz2~p2s!/2

Gru

b15
Guz2~p2s!/2

Lzz
. (28)

Clearly, Eqs.~25!–~26! are compatible only if (rW8)85m2W/r
implying thatLm(W)50 and hence, by~27!, W[0. The solution
for F1 from ~25! is then simply

F15A1I mS kpg1

r

l D1B1KmS kpg1

r

l D50 (29)

where I m ,Km are the modified Bessel functions of orderm and
A1 ,B1 are the integration constants. The radial profilesU andV
follow now at once from~24!.
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To find the remaining solutions we assume thatU and V are
derived from a potential functionF2(r ) by

U5F28 V52m
F2

r
(30)

which may be compared to~24!. Substituting~30! in ~19!–~20! we
find that both equations are reduced to the common form

a2Lm~F2!2S kp

l D 2

b2F21S kp

l DW50 (31)

where

a25
Lrr

Luz1Guz2~p2s!/2
b25

Guz1~p2s!/2

Luz1Guz2~p2s!/2
.

(32)

Similarly, Eq. ~21! becomes

2S kp

l Da1Lm~F2!1b1Lm~W!2S kp

l D 2

W50 (33)

where

a15
Lzr1Guz1~p2s!/2

Lzz
(34)

SubstitutingW from ~31! in ~33! results in the equation

FLm1S kp

l D 2

g2
2GFLm1S kp

l D 2

g3
2GF250 (35)

whereg2
2,g3

2 are the roots of the characteristic equation

a2b1g41~b1b21a22a1!g21b250 (36)

namely

H g2
2

g3
2J 52

b1b21a22a1$6%A~b1b21a22a1!224a2b1b2

2a2b1
.

(37)

The solution of~35! can be written as

F25A2JmS kpg2

r

l D1B2YmS kpg2

r

l D1A3JmS kpg3

r

l D
1B3YmS kpg3

r

l D (38)

whereJm ,Ym are the ordinary Bessel functions andA2 ,A3 ,B2 ,B3
are integration constants. The velocitiesU, V follow from ~30!
while the axial velocity profileW is obtained from~31! as

W5~a2g2
21b2!FA2JmS kpg2

r

l D1B2YmS kpg2

r

l D G1~a3g3
2

1b2!FA3JmS kpg3

r

l D1B3YmS kpg3

r

l D G . (39)

Thus, the complete solution of Eqs.~19!–~21! is the linear com-
bination ofU andV, derived from~29! and~38!, with W given by
~39!. Axially symmetric modes of bifurcation are recovered fro
the general solution withm50 andA15B150.

While the complete solution of the governing system~19!–~21!
is applicable for a uniformly stressed~1! hollow cylinder, only
full cylinders bifurcations are addressed in this study. Thus,
need to consider the restricted version of~29! and~38!–~39! with
B15B25B350 in order to avoid the unbounded values of t
Bessel functions,Km andYm , along the axisr 50. It follows that
the complete solution of continuous bifurcations for a full cylind
reads
Transactions of the ASME
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U5A1

m

r
I mS kpg1

r

l D1A2Jm8 S kpg2

r

l D1A3Jm8 S kpg3

r

l D
(40)

V52A1I m8 S kpg1

r

l D2A2

m

r
JmS kpg2

r

l D2A3

m

r
JmS kpg3

r

l D
(41)

W5A2~a2g2
21b2!JmS kpg2

r

l D1A3~a2g3
21b2!JmS kpg3

r

l D .

(42)

Compliance with the boundary data~23!, over the outer surface
r 5a, leads to three linear algebraic homogeneous equations
the integration constantsA1 ,A2 ,A3 . A nontrivial solution~bifur-
cation! is possible for discrete pairs (p,s) at which the determi-
nant of that system vanishes. The smallest value of bifurca
loads~eigenvalues! is determined via a search procedure for t
minimizing values of wave number~m, k!.

The diffuse bifurcation modes discussed here are expecte
develop, for common geomaterials, in the elliptic range of g
erning equations. An available regime classification@10,11# states,
with the present notation, that the various regimes are

~a! elliptic imaginary when

~b1b21a22a1!224a2b1b2.0, a2b1b2.0,

b1b21a22a1.0

~b! elliptic complex when

~b1b21a22a1!224a2b1b2,0, a2b1b2.0

~c! hyperbolic when

~b1b21a22a1!224a2b1b2.0, a2b1b2.0,

b1b21a22a1,0

~d! parabolic when

a2b1b2,0.

The first calculations were performed for Castlegate sands
characterized by~6! with m5h51.311, elastic constantsE
58.1 GPa andn50.35, and plastic response function

ep5K~se2Y!n, se>Y (43)

with K51.3•1026 @MPa#1/n, n53.547, andY514.08 MPa. We
emphasize here that although the presented flow and deform
theory models were derived for the general cases of nonassoc
Drucker-Prager solids, in this particular example we assumed
sociative behavior,m5h, because the Castlegate sandstone
hibited pronounced dilation~even higher than the friction angle a
low confining pressures! in the triaxial tests; the experimenta
stress-strain and volumetric strain curves can be found in P
nastasiou and Durban@16#.

Figure 1 displays the variation of the deformation theory ch
acteristics roots (g2 ,g3), as evaluated from~37!, with increasing
axial pressures and with different levels of confining pressurep.
The characteristic rootg2 is looping and then moving to the righ
whereasg3 is looping and moving to the left along thex-axis. It is
apparent from Fig. 1 that in the practical range of interest the fi
equations are elliptic complex with (g2 ,g3) being complex con-
jugates. Similar observations have been verified for other type
common geomaterials. Accordingly, we proceed in this study w
investigating the diffuse modes of bifurcation~2!–~4! within the
elliptic regime.

Notice that the eigenvalue equation has roots which dep
continuously on the parameterkpa/ l . Here, the ratioa/ l may
depend on loading history and current state of stress at the o
of bifurcation. Just to give an example, it can be shown@13# that
with the deformation theory, in the deep plastic range,
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e2~3/2!ep (44)

with ep being a known function of the effective stressse .

4 Calculation of Bifurcation Loads
Sample calculation have been performed for Castlegate s

stone~43! over a range of confining pressures. The transcende
equation resulting from the boundary data~40!–~42! has been
solved numerically to trace the lowest eigenvalue for applied a
stresss. Typical results are shown in Fig. 2 with zero confinin
pressure, different circumferential wave numbersm, and upon re-
garding the normalized axial wave numberkpa/ l as a continuous
variable. All results in Fig. 2 are for the deformation theory mod
and broadly resemble those of Chau@10# albeit his assumption of
stress independent moduli ratio. As expected~Fig. 2!, tapered
specimen with small values ofa/ l , will bifurcate with the buck-
ling mode (m51) while the axially symmetric mode (m50) be-
comes dominant at a specific value ofkpa/ l ~Fig. 2!. Notice also
the ellipticity limit ~e.l.! in Fig. 2 which indicates here the elliptic
hyperbolic boundary beyond which the emergence of shear ba
becomes possible.

Fig. 1 Variation of characteristic roots g2 ,g3 with axial stress
s for different levels of confining pressure p . Results are for
Castlegate sandstone and with deformation theory. The roots
g2 ,g3 are complex conjugates from initial yield onwards up to
the ellipticity limit where the equations become hyperbolic.

Fig. 2 Lowest bifurcation stresses for Castlegate sandstone
with zero confining pressure „pÄ0… under axial compression
s. Results are with deformation theory and the ellipticity limit
„e.l.… is indicated by a broken line.
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The bifurcation data of Fig. 2 is reproduced in Fig. 3 for critic
values of the effective plastic strainep . The gap between the
various circumferential eigenmodes in now wider, in comparis
with Fig. 2, and the practical significance of eigenmodes ass
ated with circumferential wave numbersm51 andm50 is more
apparent.

Figures 4 and 5 present bifurcation results analogous to thos

Fig. 3 Levels of effective plastic strain ep at bifurcation. Data
as in Fig. 2.

Fig. 4 Bifurcation stresses. Data as in Fig. 2 but with confining
pressure pÄ20 MPa.

Fig. 5 Effective plastic strain at bifurcation. Data as in Fig. 4.
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Figs. 2 and 3 but with a confining pressure ofp520 MPa. Higher
axial stress levels were required to initiate bifurcation~Fig. 4!
though the corresponding effective plastic strains~Fig. 5! do not
differ much from those at pure axial compression~Fig. 3!. Con-
vergence difficulties have been encountered for modes withm
.2 at intermediate values of parameterkpa/ l .

Representative calculations have been performed for nona
ciated solids, withhÞm in ~6!, but no substantial sensitivity wa
found within the range of parameters considered here. F
theory predictions for bifurcation loads are consistently high
than those obtained with deformation theory—a comparison i
be provided below in the context of assessing experimental
sults.

Ideally, the theoretical predictions should be compared with
load level at the onset of bifurcation in the triaxial experiments
is also known that in the triaxial tests bifurcation takes place in
near post-peak regime. Therefore, the easily detected peak s
in the experiments provides a lower bound to the bifurcation lo
and it will be used next as a base for comparison. Table 1 sh
values of peak stresses~i.e., maximum value ofs! measured in
the triaxial compression tests over a range of confining press
of 5 to 40 MPa. The experiments were performed on specim
with original, undeformed, length to radius ratio ofl 0 /a054. The
corresponding bifurcation points are indicated in Fig. 1. Al
shown in Table 1 are numerical results for bifurcation stresses
failure of ellipticity, as obtained from the present analysis,
both deformation and flow theories. Similar results are given
Table 2, with specimens of the same geometrical ratio ofl 0 /a0
54, for Jurrasic shale characterized by elastic parameterE
53.7 GPa,n50.35 and plastic response function given by~43!
with K51.605•1026@MPa#1/n, n52.857 andY511.76 MPa, and
m5h50.648. The calibration data for the Jurrasic shale s
ported an associated behavior, mainly due to the low value o
internal friction. All bifurcation modes in Tables 1 and 2 are f
wave numbersm51, k51, associated with buckling.

Judging from the data presented in Tables 1 and 2 it may
concluded that deformation theory predicts bifurcation loads t
are below flow theory results but above experimental pe
stresses~except for the shale peak stress atp560 MPa!. The dif-

Table 1 Comparison of flow and deformation theories predic-
tions with triaxial compression tests on Castlegate sandstone
„results in MPa …

Experiment Deformation Theory Flow Theory

Confining
pressure

Peak
stress Bifurcation

Ellipticity
limit Bifurcation

Ellipticity
limit

5 52.85 77.80 132.30 218.1 6005
10 73.84 96.60 148.80 200.9 6010
20 114.56 120.80 181.80 170.9 6020
25 123.46 135.80 198.40 165.0 6025
30 138.31 151.10 214.90 168.3 6030
35 145.82 166.50 231.50 177.4 6035
40 159.43 182.00 248.10 189.2 6040

Table 2 Comparison of flow and deformation theories predic-
tions with triaxial compression tests on Jurassic shale „results
in MPa …

Experiment Deformation Theory Flow Theory

Confining
pressure Peak stress Bifurcation

Ellipticity
limit Bifurcation

Ellipticity
limit

5 32.05 69.60 166.7 78.6 2741
25 89.10 95.20 202.4 98.7 2760
40 116.50 117.00 229.1 118.9 2775
60 164.00 148.50 264.9 148.9 2796
Transactions of the ASME
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and
ference in bifurcation results obtained from the two theories
creases with increasing confining pressure due to the dela
plastification, viase in ~6!, at higher levels of the confining pres
sure. Recall that the effective stress~6! in the triaxial compression
test is given by

se5S 12
1

3
m Ds2S 11

2

3
m D p (45)

implying, by ~43!, that the confining pressure reduces the leve
plastic strains in the specimen for this particular model.

Over the intermediate range ofp deformation theory appears t
provide a useful upper bound on the peak stress with an ave
overestimation of about 9.6 percent for Castlegate sandstone
about 3.6 percent for Jurassic shale. Failure of ellipticity is p
dicted by deformation theory in all cases to be above bifurca
stress, and is unrealistically high with flow theory.

It is likely that a more refined theoretical model can impro
the theoretical predictions by accounting for strain softening in
post peak zone and, possibly, considering stress dependen
some of the material parameters. Further improvements ca
made by resorting to a noncoaxial plasticity model along the li
followed by Papamichos and Vardoulakis@17# and Yatomi and
Shibi @7#. However, even with its present restricted validity t
Drucker-Prager deformation theory appears to provide useful
reliable results in the bifurcation analysis of pressure sensi
solids.
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Three-Dimensional Analytical
Solution for Hybrid Multilayered
Piezoelectric Plates
Analytical solutions for the static three-dimensional deformations of multilayered pi
electric rectangular plates are obtained by using the Eshelby-Stroh formalism. The
nated plate consists of homogeneous elastic or piezoelectric laminae of arbitrary t
nesses. The equations of static, linear, piezoelectricity are exactly satisfied at every
in the body. The analytical solution is in terms of an infinite series; the continuity co
tions at the interfaces and boundary conditions at the edges are used to determin
coefficients. The formulation admits different boundary conditions at the edges a
applicable to thick and thin laminated plates. Results are presented for thick piezoele
plates with two opposite edges simply supported and the other two subjected to v
boundary conditions.@S0021-8936~00!01803-1#
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1 Introduction
In recent years, piezoelectric materials have been integr

with structural systems to form a class of ‘‘smart structures.’’ T
piezoelectric materials are capable of altering the structure’s
sponse through sensing, actuation and control. By integra
surface-bonded and embedded actuators into structural sys
desired localized strains may be induced by applying the ap
priate voltage to the actuators.

In order to successfully incorporate piezoelectric actuators
structures, the mechanical interaction between the actuators
the base structure must be fully understood. Mechanical mo
were developed by Crawley and de Luis@1#, Im and Atluri @2#,
Crawley and Anderson@3#, and others for piezoelectric patche
mounted to top and/or bottom surfaces of a beam. Lee@4# devel-
oped a theory for laminated plates with distributed piezoelec
layers based on the classical lamination theory. Wang and Ro
@5# applied the classical lamination theory to plates with surfa
bonded or embedded piezoelectric patches. A coupled first-o
shear deformation theory for multilayered piezoelectric plates
presented by Huang and Wu@6#. Mitchell and Reddy’s@7#
coupled higher-order theory is based on an equivalent single-l
theory for the mechanical displacements and layerwise discre
tion of the electric potential. Numerous finite element studies h
also been conducted~e.g., see Robbins and Reddy@8#, Ha et al.
@9#, Heyliger et al.@10#, and Batra and Liang@11#!.

Vlasov @12#, Pagano@13,14#, and Srinivas and Rao@15# ob-
tained three-dimensional analytical solutions for simply su
ported, laminated anisotropic elastic plates. Their method
been extended by Ray et al.@16# and Heyliger and Brooks@17# to
study the cylindrical bending of laminated piezoelectric plat
Analytical solutions for the static behavior of a homogeneous s
ply supported, piezoelectric rectangular plate was given by
segna and Maceri@18# and Lee and Jiang@19#. Heyliger @20,21#
provided a three-dimensional solution for the static behavior
multilayered piezoelectric rectangular plates. All the aforem
tioned three-dimensional solutions are restricted to piezoele
laminates whose edges are simply supported and electric
grounded. Such solutions are useful for validating new or

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
2, 1999; final revision, Nov. 23, 1999. Associate Technical Editor: I. M. Danie
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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proved plate theories~@22#! and finite element formulations
~@10,23#!. However, simply supported boundary conditions a
less frequently realized in practice and they do not exhibit
well-known singular effects observed near clamped or tracti
free edges. The available analytical solution techniques for th
dimensional deformations are incapable of analyzing lamina
with clamped or traction-free edges and/or when the edges
electrically in contact with a low-permittivity medium like air
wherein the normal component of the electrical displacem
vanishes.

The Eshelby-Stroh formalism~@24–26#! provides exact solu-
tions to the governing differential equations of anisotropic ma
rials under generalized plane-strain deformations in terms of a
trary analytical functions. Vel and Batra@27,28# adopted a series
solution for the analytic functions to analyze the generaliz
plane-strain deformation of laminated elastic plates subjecte
arbitrary boundary conditions, and the cylindrical bending o
laminated elastic plate with embedded or surface mounted pi
ceramic patches. Recently, Vel and Batra@29# generalized the
Eshelby-Stroh formalism to study the three-dimensional deform
tions of laminated elastic rectangular plates with arbitrary bou
ary conditions. Here we extend this method to multilayered pie
electric plates subjected to arbitrary boundary conditions. T
edges of each lamina may be subjected to mechanical and ele
cal boundary conditions different from those on the adjoini
laminae. The governing differential equations are solved exa
and various constants in the resulting series solution are de
mined from the boundary conditions at the edges and the cont
ity conditions at the interfaces. This results in an infinite system
equations in infinitely many unknowns. By retaining a large nu
ber of terms in the series solution, the mechanical displaceme
stresses, electric potential, and electric displacement can be
puted to any desired degree of accuracy. Results are presente
thick piezoelectric plates with two edges simply supported and
other two edges subjected to arbitrary boundary conditions. Th
results can be used to assess the accuracy of different plate
ries and finite element formulations.

2 Formulation of the Problem
We use a rectangular Cartesian coordinate system, show

Fig. 1, to describe the infinitesimal quasi-static deformations of
N-layer piezoelectric laminated plate occupying the reg
@0,L1#3@0,L2#3@0,L3# in the unstressed reference configuratio
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on,
li-
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The vertical positions of the bottom and top surfaces as well a
the N21 interfaces between the laminae are denoted byL3

(1)

50, L3
(2) , . . . ,L3

(n) , . . . ,L3
(N) , L3

(N11)5L3 .
The equilibrium equations and charge equations of electros

ics in the absence of body forces and free charges are

s jm,m50, Dm,m50, ~ j ,m51,2,3!, (1)

wheres jm are the components of the Cauchy stress tensor andDm
the electric displacement. A comma followed by indexm indicates
partial differentiation with respect to the present positionxm of a
material particle, and a repeated index implies summation ove
range of the index.

The constitutive equations of a linear piezoelectric medium
~@30#!

s jm5Cjmqr«qr2er jmEr , Dm5emqr«qr1emrEr ,

~q,r 51,2,3!, (2)

where«qr are the components of the infinitesimal strain tensor,Er
the electric field,Cjmqr the elasticity constants,er jm the piezoelec-
tric moduli, andemr the electric permittivity. The infinitesima
strain tensor and electric field are related to the mechanical
placementuq and electric potentialf by

«qr5
1

2
~uq,r1ur ,q!, Ej52f , j . (3)

We will interchangeably use the direct and indicial notation. T
stored energy densityW for a piezoelectric medium is given b
~@30#!

W5
1

2
~s jm« jm1DmEm!5

1

2
~Cjmqr« jm«qr1emrEmEr !. (4)

The symmetry of the stress and strain tensors and the existen
the stored energy function imply the following symmet
conditions:

Cjmqr5Cm jqr5Cqr jm , er jm5erm j , emr5e rm . (5)

In the most general case, there are 21 independent elastic
stants, 18 independent piezoelectric moduli, and 6 indepen
dielectric permittivities. Material elasticities are assumed to yi
a positive stored energy density for every nonrigid deformat
and/or nonzero electric field. That is,

Cjmqruj ,muq,r.0, emrEmEr.0, (6)

for every real nonzero« jm andEm . The total stored energyU of
the piezoelectric laminate is given by

U5E
R

Wdv, (7)

whereR5@0,L1#3@0,L2#3@0,L3#. The displacement or traction
components and electric potential or normal component of
electric displacement on the edgesx150, L1 ; x250, L2 ; and on
the bottom and top surfaces are specified as

Fig. 1 An N-layer laminated piezoelectric plate
Journal of Applied Mechanics
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Iuf
~s!F u

f G1IsD
~s! F ss

Ds
G5f~s! on xs50,

~s51,2,3!, (8)

Juf
~s!F u

f G1JsD
~s! F ss

Ds
G5g~s! on xs5Ls ,

where (ss) i5s is . The functions f(s),g(s) are known and
Iuf
(s) ,IsD

(s) ,Juf
(s) ,JsD

(s) are 434 diagonal matrices. For most applica
tions, these diagonal matrices have entries either zero or one
that

Iuf
~s!1IsD

~s! 5Juf
~s!1JsD

~s! 5I ~s51,2,3!, (9)

with I being the 434 identity matrix. For example, if the surfac
x150 is rigidly clamped and electrically grounded thenIuf

(1)5I ,
IsD
(1) 50 andf(1)(x2 ,x3)50, i.e.,u15u25u350, f50. If the sur-

face is rigidly clamped and the normal component of the elec
displacement is zero, then Iuf

(1)5diag@1,1,1,0#, IsD
(1)

5diag@0,0,0,1#. Boundary conditions at an electrically grounde
simply supported edgex150 may be simulated byIuf

(1)

5diag@0,1,1,1#, IsD
(1) 5diag@1,0,0,0# and f(1)(x2 ,x3)50, i.e., u2

5u350, f50 ands1150. The method is valid even when th
elements of matricesIuf

(s) , IsD
(s) , Juf

(s) and JsD
(s) are functions of

coordinates only.
The interface conditions on the material surfacesx3

5L3
(2) , . . . ,L3

(n) , . . . ,L3
(N) may be specified as follows:

~a! If the surfacex35L3
(n) is an interface between two laminae

the mechanical displacements, surface tractions, electric poten
and the normal component of the electric displacement betw
them are taken to be continuous. That is

vub50,vs3b50, vf b50, vD3b50 on x35L3
~n! . (10)

Here vub denotes the jump in the value ofu across an interface
Thus the adjoining laminae are presumed to be perfectly bon
together.

~b! If the surfacex35L3
(n) is an electroded interface, then th

potential on this surface is a known functionf (x1 ,x2) while the
normal component of the electric displacement need not be c
tinuous across this interface, i.e.,

vub50, vs3b50, f5 f ~x1 ,x2! on x35L3
~n! . (11)

We assume that the electrode is of infinitesimal thickness
ignore its influence on the mechanical deformations of
structure.

3 A Solution of the Governing Differential Equations

We construct a local coordinate systemx1
(n) ,x2

(n) ,x3
(n) with local

axes parallel to the global axes and the origin at the point wh
the globalx3-axis intersects the bottom surface of thenth lamina.
In this local coordinate system, thenth lamina occupies the region
@0,l 1#3@0,l 2#3@0,l 3

(n)#, where l 15L1 , l 25L2 and l 3
(n)5L3

(n11)

2L3
(n) . We drop the superscriptn for convenience with the un-

derstanding that all material constants and variables belong to
lamina.

The Eshelby-Stroh formalism~@24–26#! provides a solution for
the generalized plane-strain deformations of a linear elas
piezoelectric anisotropic material. We extend it to thre
dimensional deformations by assuming that

F u
f G5a expF i S k1p

l 1
x11

k2p

l 2
x21p

x3

l 3
D G , (12)

wherea and p are possible complex constants to be determin
k1 andk2 are known integers, andi 5A21. The chosen displace
ment and potential field has a sinusoidal variation on thex12x2
SEPTEMBER 2000, Vol. 67 Õ 559
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plane with an arbitrary exponential variation in thex3-direction;
k1 andk2 determine the period of the sinusoidal terms in thex1
andx2-directions respectively.

From Eqs.~12!, ~3!, and~2! we obtain

s jm5 i ~Cjmqraq1er jma4!S k1p

l 1
d r11

k2p

l 2
d r21p

d r3

l 3
D

3expF i S k1p

l 1
x11

k2p

l 2
x21p

x3

l 3
D G ,

(13)

Dm5 i ~emqraq2emra4!S k1p

l 1
d r11

k2p

l 2
d r21p

d r3

l 3
D

3expF i S k1p

l 1
x11

k2p

l 2
x21p

x3

l 3
D G .

Hered i j is the Kronecker delta~@30#!. Substitution of~13! into ~1!
gives equations which can be written as

$QC1p@RC1~RC!T#1p2TC%aC1$qe1p@re1se#1p2te%a450,
(14)

$~qe!T1p@~re!T1~se!T#1p2~ te!T%aC2$qe1p@r e1se#1p2te%a4

50,

where aC5@a1 ,a2 ,a3#T, the matricesQC,RC,TC are related to
the elastic constantsCjmqr by

Qjq
C 5

k1
2p2

l 1
2 Cj 1q11

k1k2p2

l 1l 2
~Cj 1q21Cj 2q1!1

k2
2p2

l 2
2 Cj 2q2 ,

(15)

Rjq
C 5

k1p

l 3l l
Cj 3q11

k2p

l 3l 2
Cj 3q2 , Tjq

C 5
1

l 3
2 Cj 3q3,

the vectorsqe, re, se, andte are related to the piezoelectric modu
er jm by

qj
e5

k1
2p2

l 1
2 e1 j 11

k1k2p2

l 1l 2
~e1 j 21e2 j 1!1

k2
2p2

l 2
2 e2 j 2 ,

r j
e5

k1p

l 3l 1
e3 j 11

k2p

l 3l 2
e3 j 2 , sj

e5
k1p

l 3l 1
e1 j 31

k2p

l 3l 2
e2 j 3 , (16)

t j
e5

1

l 3
2 e3 j 3 ,

and the scalarsqe, r e, se, andte are related to the electric permi
tivity e j r by

qe5
k1

2p2

l 1
2 e111

k1k2p2

l 1l 2
~e121e21!1

k2
2p2

l 2
2 e22,

(17)

r e5
k1p

l 3l 1
e311

k2p

l 3l 2
e32, se5

k1p

l 3l 1
e131

k2p

l 3l 2
e23, te5

1

l 3
2 e33.

It should be noted thatse5r e due to the symmetry restriction~5!3
on the electric permittivity tensor. The two equations in~14! can
be combined as

$Q1p@R1RT#1p2T%a50, (18)

where

Q5F QC qe

~qe!T 2qeG , R5F RC re

~se!T 2r eG , T5F TC te

~ te!T 2teG .
(19)

Following the method used by Suo et al.@31# for generalized
plane deformations of piezoelectric materials, we can prove
the eigenvaluesp of ~18! cannot be real. Since the matricesQ, R,
andT in ~18! are real, there are four pairs of complex conjuga
values forp. Let (pa ,aa) (a51,2, . . . ,8) beeigensolutions of
~18! such that
560 Õ Vol. 67, SEPTEMBER 2000
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Im~pa!.0, pa145 p̄a , aa145āa ~a51, . . . ,4!,
(20)

where a bar superimposed on a quantity denotes its complex
jugate. For distinctpa we can superpose eight solutions of th
form ~12! to obtain

F u
f G5AK expF i S k1p

l 1
x11

k2p

l 2
x21p*

x3

l 3
D G L c1conjugate,

(21)

where A5@a1 ,a2 ,a3 ,a4#, c is an arbitrary 431 vector of un-
known complex coefficients, ^c(p* )&5diag@c(p1),
c(p2),c(p3),c(p4)#, and conjugate stands for the complex con
gate of the explicitly stated term. We obtain the following expre
sions for the stress tensor and electric displacement by supe
ing eight solutions of the form~13!,

F sm

Dm
G5SmK expF i S k1p

l 1
x11

k2p

l 2
x21p*

x3

l 3
D G L c1conjugate,

(22)

where

Sm5@V~m,1!a1 ,V~m,2!a2 ,V~m,3!a3 ,V~m,4!a4#,

V~m,a!5F V~m,a!
C v~m,a!

e

~w~m,a!
e !T 2v ~m,a!

e G ,

~V~m,a!
C ! jq5 i S k1p

l 1
Cjmq11

k2p

l 2
Cjmq21pa

Cjmq3

l 3
D , (23)

~v~m,a!
e ! j5 i S k1p

l 1
e1 jm1

k2p

l 2
e2 jm1pa

e3 jm

l 3
D ,

~w~m,a!
e ! j5 i S k1p

l 1
em j11

k2p

l 2
em j21pa

em j3

l 3
D ,

v ~m,a!
e 5 i S k1p

l 1
em11

k2p

l 2
em21pa

em3

l 3
D .

The expressions~21! and ~22! are valid when the eigenvaluespa
are distinct, or if they are not, there exist eight independent e
envectorsaa . If an eigenvalue is repeatedr times (2<r<4) and
it does not haver corresponding independent eigenvectors, th
~21! and~22! need to be modified appropriately. The procedure
similar to that given for elastic laminates by Vel and Batra@29#.

4 A Series Solution
The complete double Fourier series expansion constructe

satisfy the boundary/interface conditions on the surfacesx3
(n)

50, l 3
(n) is obtained by superposing solutions of the form~21!. In

the following equations the first superscriptn denotes thenth
lamina and the second superscript 3 indicates that the series t
have a double Fourier series expansion on the planesx3

(n)50 and
l 3
(n) . The dependence of the eigenvalues and eigenvectors ok1

andk2 is indicated by the subscripts.

F u~n,3!

f~n,3!G5A~k0 ,k0!
~n,3! @h~k0 ,k0!

~n,3! c~k0 ,k0!
~n,3! 1j~k0 ,k0!

~n,3! d~k0 ,k0!
~n,3! #1 (

k151

`

A~k1,0!
~n,3!

3@h~k1,0!
~n,3! c~k1,0!

~n,3! 1j~k1,0!
~n,3! d~k1,0!

~n,3! #1 (
k251

`

A~0,k2!
~n,3! @h~0,k2!

~n,3! c~0,k2!
~n,3!

1j~0,k2!
~n,3! d~0,k2!

~n,3! #1 (
k1 ,k251

`

$A~k1 ,k2!
~n,3! @h~k1 ,k2!

~n,3! c~k1 ,k2!
~n,3!

1j~k1 ,k2!
~n,3! d~k1 ,k2!

~n,3! #1A~k1 ,2k2!
~n,3! @h~k1 ,2k2!

~n,3! c~k1 ,2k2!
~n,3!

1j~k1 ,2k2!
~n,3! d~k1 ,2k2!

~n,3! #%1conjugate. (24)
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The terms involvingk0P(0,1) play the role of the constant term
in the double Fourier series expansion and

h~k1 ,k2!
~n,3! ~x1

~n! ,x2
~n! ,x3

~n!!5K expF i S k1p

l 1
x1

~n!1
k2p

l 2
x2

~n!

1p
~k1 ,k2 ,* !

~n,3! x3
~n!

l 3
~n! D G L ,

(25)

j~k1 ,k2!
~n,3! ~x1

~n! ,x2
~n! ,x3

~n!!5K expF2 i S k1p

l 1
x1

~n!1
k2p

l 2
x2

~n!

1p
~k1 ,k2 ,* !

~n,3! S x3
~n!

l 3
~n! 21D D G L .

The functionsh(k1 ,k2)
(n,3) (x1

(n) ,x2
(n) ,x3

(n)) and j(k1 ,k2)
(n,3) (x1

(n) ,x2
(n) ,x3

(n))

vary sinusoidally on the surfacesx3
(n)50, l 3

(n) and exponentially in
the x3

(n)-direction. The inequality~20!1 ensures that all functions
decay exponentially towards the interior of thenth lamina.

Similar expressions can be written for@u(n,1),f (n,1)#T and
@u(n,2),f (n,2)#T which have a complete double Fourier series e
pansion on the side surfacesx1

(n)50,l 1 andx2
(n)50,l 2 respectively.

The mechanical displacement, electric potential, stress, and
tric displacement fields for thenth lamina are

F u~n!

f~n!G5(
s51

3 F u~n,s!

f~n,s!G , F sm
~n!

Dm
~n!G5(

s51

3 F sm
~n,s!

Dm
~n,s!G . (26)

The unknownsc(k1 ,k2)
(n,s) and d(k1 ,k2)

(n,s) in ~26! are assumed to be

complex, except forc(k0 ,k0)
(n,s) andd(k0 ,k0)

(n,s) which are real.

5 Satisfaction of Boundary and Interface Conditions
The boundary conditions~8! on the surfacesxs50, Ls and con-

tinuity conditions ~10! or ~11! on the interfacesx35L3
(2) ,

L3
(3) , . . . ,L3

(N) are satisfied by the classical Fourier series meth
resulting in a system of linear algebraic equations for the
known coefficientsc(k1 ,k2)

(n,s) and d(k1 ,k2)
(n,s) . On the bottom surface

x3
(1)50, we extend the component functions in~26! defined on

@0,l 1#3@0,l 2# to the interval@2 l 1 ,l 1#3@2 l 2 ,l 2#. The functions
h(k1 ,k2)

(1,3) andj(k1 ,k2)
(1,3) which have a sinusoidal variation on the pla

x3
(1)50 are extended without modification since they form t

basis functions for this surface, except for terms involvingk0

which are extended as even functions. The functionsh(k1 ,k2)
(1,1) and

j(k1 ,k2)
(1,1) which have an exponential variation in thex1

(1)-direction

and a sinusoidal variation in thex2
(1)-direction are extended a

even functions in thex1
(1)-direction and without modification in

thex2
(1)-direction. The functionsh(k1 ,k2)

(1,2) andj(k1 ,k2)
(1,2) are extended

as even functions in thex2
(1)-direction and without modification in

the x1
(1)-direction. The prescribed functionf(3)(x1

(1) ,x2
(1)) is suit-

ably extended. We multiply~8!1 corresponding tos53 by
exp@i(k̃1 px1

(1)/l11k̃2px2
(1)/l2# and integrate the result with respect

x1
(1) andx2

(1) over the interval@2 l 1 ,l 1#3@2 l 2 ,l 2# to obtain

E
2 l 2

l 2 E
2 l 1

l 1 H Iuf
~3!F u~1!

f~1!G1IsD
~3!F s3

~1!

D3
~1!G2f~3!J

3expF i S k̃1px1
~1!

l 1
1

k̃2px2
~1!

l 2
D Gdx1

~1!dx2
~1!50 at x3

~1!50,

(27)

for all ( k̃1 ,k̃2)P($0%,$0%)ø(Z13$0%)ø($0%3Z1)ø(Z1

3Z1)ø(Z13Z2), whereZ1 andZ2 denote the sets of positiv
and negative integers, respectively. The same procedure is
Journal of Applied Mechanics
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peated for the boundary condition~8!2 on the top surface of the
Nth lamina withs53 and the interface continuity conditions~10!
or ~11! between the various laminae.

On the side surfacesx1
(n)50,l 1 the functions are extended ove

the interval @2 l 2 ,l 2#3@2 l 3
(n) ,l 3

(n)# in the x2
(n)2x3

(n) plane. We
then multiply ~8! corresponding tos51 by exp@i(k̃2px2

(n)/l2
1k̃3px3

(n)/l3
(n))# and integrate the result with respect tox2

(n) andx3
(n)

over @2 l 2 ,l 2#3@2 l 3
(n) ,l 3

(n)#. A similar procedure is used to sa
isfy the boundary conditions~8! corresponding tos52 on the
surfacesx2

(n)50,l 2 .
Substitution from~26! into ~27! and the other equations tha

enforce the boundary conditions on the top surface, the interfa
between adjoining laminae and the side surfaces leads to an
nite set of linear algebraic equations for the infinitely many u
known coefficientsc(k1 ,k2)

(n,s) andd(k1 ,k2)
(n,s) . A general theory for the

solution of the resulting infinite system of equations does not
ist. However, reasonably accurate results can be obtained by
cating k1 and k2 in ~24! to K1 and K2 terms, respectively. The
series involving summations overk1 andk2 in the expression for
@u(n,1),f (n,1)# are truncated toK2 and K3

(n) while those for
@u(n,2),f (n,2)# are truncated toK3

(n) andK1 terms. In general, we
try to maintain approximately the same period of the largest h
monic on all interfaces and boundaries by choosingK3

(n)

5Ceil(K1l 3
(n)/ l 1) and K25Ceil(K1l 2 / l 1), where Ceil(y) equals

the smallest integer greater than or equal toy. Thus, the size of the
truncated matrix will depend solely on the choice ofK1 .

6 Results and Discussion
Problems studied by Heyliger@20# and Heyliger et al.@10# were

analyzed by the present method withK15200, and the two sets o
results matched very well. As shown below, satisfactory res
can be computed even withK1550.

We present results for laminated plates with each lamina m
of either graphite-epoxy~@22#!, PVDF ~@10,32#! or PZT-5A ~@22#!
with nonzero values of material variables listed in Table 1. W
treat the graphite-epoxy layer as a piezoelectric material with
piezoelectric moduli set equal to zero, and solve for the elec
field in the graphite-epoxy layer which is uncoupled from t
elastic field. In this section we denote the thickness of the la
nate byH(5L3).

Although our solution is applicable to laminates with gene
boundary conditions on all four edges, here we consider lamina
piezoelectric plates that are simply supported and electric
grounded on the opposite edgesx250 andL2 , i.e., u15u350,
s2250, f50, and the other two edges subjected to vario
boundary conditions. The reason for this choice is that if ea

Table 1 Nonvanishing material properties of the graphite-
epoxy, PVDF, and PZT-5A
SEPTEMBER 2000, Vol. 67 Õ 561
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Table 2 Convergence study for a †0 deg PVDF Õ90 deg PVDF ‡ square laminate
subjected to mechanical load, L 1 ÕHÄ5
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lamina is made of a monoclinic material of crystal class m~see
@33#!, then the boundary conditions at the edgesx250,L2 are
identically satisfied by the following mechanical displacement a
electric potential distributions:

u5@ f 1~x1 ,x3!sin~lpx2 /L2!, f 2~x1 ,x3!

3cos~lpx2 /L2!, f 3~x1 ,x3!sin~lpx2 /L2!#T

f5 f 4~x1 ,x3!sin~lpx2 /L2!. (28)

The equilibrium and charge equations will yield coupled par
differential equations forf a(x1 ,x3), (a51, . . . ,4). Thus, we
need only one term, namelyk25l, in the x2-direction in the
double Fourier series expansion and the size of the truncated
trix is greatly reduced. PVDF and graphite-epoxy are orthorho
bic materials of crystal class mm2 and PZT-5A is a hexago
material of crystal class 6mm, all of which belong to the group
monoclinic materials of crystal class m.

The edgesx150,L1 may be either clamped~C! with u15u2
5u350, or free of traction~F! with s115s125s1350 or simply
supported~S! with u15u350, s1150. We append P when th
edge is electrically grounded (f50) or D when the normal com
ponent of the electric displacement is set to zero, i.e.,D150. For
example, FP-FP denotes a laminated plate that is traction-free
electrically grounded on the edgesx150 andL1 . In this notation,
all analytical three-dimensional solutions available to date~@18–
21#! are for piezoelectric laminates that have all four edges s
jected to SP boundary conditions.

6.1 PVDF Cross-Ply Laminate. Consider a two-ply square
laminate with the bottom and top layers made of 0 deg PVDF
90 deg PVDF, respectively. The material properties of the 90
PVDF may be inferred from those of the 0 deg PVDF given
Table 1. Both layers are of equal thickness,L1 /H55 and L1
51.0 m. The interface is electroded and conditions~11! are en-
forced with f (x1 ,x2)50 on x35H/2. The following two electro-
mechanical loading cases are considered:
~i! Mechanical load:

s3~x1 ,x2 ,H !5@0,0,q0/2#T sin~px1 /L1!sin~px2 /L2!
(29)
MBER 2000
nd

ial

ma-
m-
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s3~x1 ,x2,0!5@0,0,2q0/2#T sin~px1 /L1!sin~px2 /L2!

f~x1 ,x2 ,H !5f~x1 ,x2,0!50;

~ii ! Electrical load:

f~x1 ,x2 ,H !5f~x1 ,x2,0!50.5f0 sin~px1 /L1!sin~px2 /L2!,

s3~x1 ,x2 ,H !5s3~x1 ,x2,0!50. (30)

Results for combined mechanical and electrical loads can
obtained by superposition of the solutions corresponding to lo
~i! and ~ii !.

The effect of truncation of the series on the accuracy of
solution is investigated for the two-ply laminated plate with tw
opposite edges simply supported and grounded and the other
edges subjected to FD-FD boundary conditions. Computed res
for various quantities at specific points in the laminate are listed
Table 2 for the case of the mechanical loading. The followi
nondimensionalization has been used:

@ ũ1~x3!,ũ3~x3!#5
C0

L1q0
Fu1S L1

4
,
L2

2
,x3D ,u3S L1

2
,
L2

2
,x3D G ,

@s̃11~x3!,s̃13~x3!#5
1

q0
Fs11S L1

2
,
L2

2
,x3D ,s13S L1

8
,
L2

2
,x3D G ,

@s̃23~x3!,s̃33~x3!#5
1

q0
Fs23S L1

8
,0,x3D ,s33S L1

2
,
L2

2
,x3D G ,

f̃~x3!5
1000e0

L1q0
fS L1

2
,
L2

2
,x3D , (31)

D̃3~x3!5
C0

e0q0
D3S L1

2
,
L2

2
,x3D ,

Ũ5
UC0

q0
2L1

3 ,

where C0523.60 GPa ande0520.145 Cm22 are representative
values of the elastic and piezoelectric moduli for a PVDF~Table
Table 3 Convergence study for a †0 deg PVDF Õ90 deg PVDF ‡ square laminate
subjected to electrical load, L 1 ÕHÄ5
Transactions of the ASME
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1!. These results show that the mechanical displacementsũ1 and
ũ3 , transverse shear stresss̃13 and electric potentialf̃ converge
rapidly, but the axial stresss̃11 and transverse componentD̃3 of
the electric displacement converge slowly. The upper and lo
values of the transverse displacementũ3 and transverse shea
stresss̃13 are at corresponding points on the two sides of
interface between the laminae. As is evident, the interface co
nuity conditions are also satisfied very well with increasingK1 .
The difference in the values ofs̃11(H) and s̃13(H

1/2) for K1
5150 and 200 is 0.15 percent and 0.16 percent, respectively.
total stored energyŨ exhibits monotonic convergence from abo
and has converged to four decimal places forK1550. Whilek0 in
~24! was chosen to be 0.5 for this study, a similar converge
behavior was observed for other values ofk0 . Table 3 presents a
convergence study for the case of electric loading wherein
nondimensional variables are defined as

@ û1~x3!,û3~x3!#5
C0

e0f0
Fu1S L1

4
,
L2

2
,x3D ,u3S L1

2
,
L2

2
,x3D G ,

@ŝ11~x3!,ŝ13~x3!#5
L1

e0f0
Fs11S L1

2
,
L2

2
,x3D ,s13S L1

8
,
L2

2
,x3D G ,

@ŝ23~x3!,ŝ33~x3!#5
L1

e0f0
Fs23S L1

8
,0,x3D ,s33S L1

8
,
L2

2
,x3D G ,

f̂~x3!5
1

f0
fS L1

2
,
L2

2
,x3D , (32)

D̂3~x3!5
L1C0

100e0
2f0

D3S L1

2
,
L2

2
,x3D , Û5

U

f0
2e0L1

.

Heree051.0607310210 F/m is the typical magnitude of the elec
tric permittivity of a PVDF. In this case too, the mechanical d
placements, electric potential, and transverse shear stress
verge faster than the longitudinal stress and transverse compo
of the electric displacement. The total stored energy for the e
trical loading converges monotonically from below, in contrast
the case of the mechanical loading where the convergence is
Journal of Applied Mechanics
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above. Thus for the combined mechanical and electrical load
the total stored energy may not converge monotonically. Res
presented below are forK15200.

Electric potential is induced in the laminate due to the appli
tion of the mechanical load. The through-thickness distribution
the electric potential at the midspan is shown in Fig. 2 correspo
ing to three different boundary conditions. The electric poten
distribution within each layer is parabolic and the magnitude
pends on the boundary condition at the edge. Figure 3 depicts
the mechanical and electric loading the through-thickness di
bution of the transverse displacement, longitudinal stress,
transverse shear stress for three different sets of boundary co
tions at the edgesx150,L1 . The transverse displacement esse
tially remains independent of the thickness coordinate for m
chanical loading, as is usually assumed in the theory of lamina
elastic plates. When subjected to an electric load, the top
bottom surfaces exhibit larger transverse displacement than
midplane. The longitudinal stresss11 is discontinuous across th

Fig. 2 Influence of the boundary conditions on the through-
thickness distribution of the potential due to a mechanical load
for the †0 deg PVDF Õ90 deg PVDF ‡ laminate
Fig. 3 Influence of the boundary conditions on the through-thickness distribution of the trans-
verse displacement, longitudinal stress, and transverse shear stress for the †0 deg PVDF Õ90 deg
PVDF‡ laminate subjected to „a… mechanical load and „b… electrical load
SEPTEMBER 2000, Vol. 67 Õ 563
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of a
interface due to the change in material properties between
laminae. The longitudinal stress is largest in magnitude on
bottom surface for the mechanical loading and on the 0 deg PV
side of the interface for the electrical loading. The maximu
transverse shear stresss13 occurs at aboutx3.0.3H for the case

Fig. 4 Axial variation on the interface of the †0 deg PVDF Õ90
deg PVDF ‡ laminate „a… transverse electric displacement for the
mechanical load and „b… transverse shear stress for the electric
load
564 Õ Vol. 67, SEPTEMBER 2000
the
the
DF
m

of the mechanical loading and is largest when the edges
clamped. When subjected to the electrical load, the maxim
transverse shear stress occurs on the interface when the edg
simply supported or traction-free and atx3.0.3H when the edges
are clamped.

The axial variation of the induced electric displacement co
ponentD3 on the 0 deg PVDF side of the interface is shown
Fig. 4~a! for the mechanical loading. The result is plotted ov
only half the span since it is symmetric about the midspan. W
the edges are simply supported and grounded, i.e., SP boun
conditions,D3 is largest at the midspan and vanishes at the ed
x150,L1 . In the case of SD and CD boundary conditions,D3 is
essentially uniform over the middle eight-tenth of the span
varies from219 atx150 to 21 atx150.1L1 . This rapid change
in D3 near the edges has not been investigated in detail. The l
electric displacements could lead to dielectric failure at the ed
when the laminate is subjected to only a moderate mechan
load. The shear stresss13 on the interface due to an electric loa
is antisymmetric about the midspan and is shown in Fig. 4~b!. A
thorough study of this rapid change ins13 at the edges excep
when they are simply supported and grounded, necessitate
use of special functions and has not been pursued here. The
stress at the edges seems to be singular for SD and CD boun
conditions and could lead to delamination failure at the ed
even for moderate electrical loads. Such large stresses were
observed at the edges of piezoelectric layers by Batra et al.@34#
and Robbins and Reddy@8#.

Figures 5~a! and~b! show the transverse deflection of the mi
plane for the case of the mechanical and electrical load, res
tively, when two of the edges are clamped or traction-free. T
transverse deflection of a laminate that is simply supported
electrically grounded on all four edges has the double-sinuso
shape of the applied mechanical~29! or the electrical load~30!,
and is not depicted. This is not true when two of the edges
clamped or traction-free. The transverse deflection at the cente
the plate is largest when two edges are traction-free and sma
when they are clamped. The transverse deflection near
clamped edges is opposite in direction to that at the center
Fig. 5 Influence of the boundary conditions on the midplane transverse dis-
placement of the †0 deg PVDF Õ90 deg PVDF ‡ laminate for „a… mechanical load and
„b… electrical load
Transactions of the ASME
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CD-CD laminate when subjected to the electric load.
The present method can also analyze laminated plates whe

edges of each lamina are subjected to boundary conditions di
ent from those on the corresponding edge of the adjoining la
nae. As an example, consider the configuration denoted by~CD,
FD!-~CD,FD! wherein the bottom lamina of the two-ply laminate
plate is clamped atx150 andL1 and the corresponding edges
the top lamina are traction-free with the normal component of
electric displacement set equal to zero for both laminae. Figu
depicts the through-thickness distribution of the transverse s
stresss13 on three sections when the laminate is subjected to
electric load. As we approach the edge, the point of the maxim
transverse shear stress in the 0 deg PVDF lamina shifts clos
the interface and it is accompanied by large gradients. Nume
results at specific points in the laminate for four sets of bound
conditions given in Table 4 can be used to compare predict
from various plate theories and finite element solutions.

Fig. 6 Through-thickness variation of the transverse shear
stress on three sections of a †0 deg PVDF Õ90 deg PVDF ‡ lami-
nate with layerwise variation of boundary conditions
Journal of Applied Mechanics
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6.2 Graphite-Epoxy and PZT-5A Hybrid Laminate.
Consider a three-ply square laminate with the bottom and mid
layers made of graphite-epoxy with fibers parallel to thex1 andx2
directions, respectively, and the topmost layer made of PZT-
i.e., @0 deg GE/90 deg GE/PZT-5A#. The graphite-epoxy layers
are of thickness 0.4H, the PZT-5A layer is of thickness 0.2H,
L1 /H55 andL151.0 m. Interface conditions~10! are assumed
between the graphite-epoxy laminae. The interface between
PZT-5A and its neighboring graphite-epoxy lamina is electrod
and grounded. The bottom surface of the laminate is traction-
and the following two electromechanical loadings are conside
for the top surface:

~i! Mechanical load: s3(x1 ,x2 ,H)5@0,0,q0#T sin(px1 /L1)
3sin(px2 /L2),f(x1,x2,H)50,

~ii ! Electrical load:f(x1 ,x2 ,H)5f0 sin(px1 /L1)3sin(px2 /L2),
s3(x1 ,x2 ,H)50.

Table 4 Mechanical displacement, stresses, electric potential,
and electric displacement at specific locations of a square †0
deg PVDF Õ90 deg PVDF ‡ laminate for various boundary condi-
tions, L 1 ÕHÄ5
Fig. 7 Influence of the boundary conditions on the through-thickness distribution of the
stresses for the †0 deg GE Õ90 deg GE ÕPZT-5A‡ laminate, „a… mechanical load and „b… electrical
load
SEPTEMBER 2000, Vol. 67 Õ 565
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The nondimensionalizations~31! and ~32! are used withC0

599.201 GPa ande0527.209 Cm22; they are representative va
ues of the elastic and piezoelectric moduli of a PZT-5A. Figu
7~a! depicts the through-thickness distribution of stresses for
mechanical loading. The longitudinal stress is approximat
piecewise affine. The transverse shear stresss13 is larger when
the edges are clamped than when they are simply supporte
traction-free. The shear stresss23 attains the maximum value in
the 90 deg GE lamina and is largest when the edges are trac
free. The corresponding through-thickness variation of the stre
for the electric loading is shown in Fig. 7~b!. The longitudinal
stresss11 on the PZT-5A side of the interface is larger than that
other points. The maximum value of the transverse shear s
s13 is at the interface between the PZT and the substrate
simply supported and traction-free boundary conditions and
curs in the 0 deg GE lamina for the clamped boundary condit
The maximum value of the transverse shear stresss23 is at the
interface between the PZT and the substrate for all three boun
conditions. Figures 8~a! and ~b! show the axial variation of the
transverse shear stresss13 on the mid-surface of the PZT-5A laye
for three different boundary conditions. They exhibit rapid var
tions at the edges except when the edges are simply supporte
electrically grounded. Further results at specific points are gi
in Table 5 for the three sets of boundary conditions.

7 Conclusions
We have extended the Eshelby-Stroh formalism to study

three-dimensional deformations of thick piezoelectric lamina
subjected to arbitrary boundary conditions at the edges. The e
tions of static, linear, piezoelectricity are satisfied at every poin
the body. The analytical solution is in terms of an infinite seri
the boundary conditions and the continuity conditions at the in
faces between the laminae are used to determine the unkn

Fig. 8 Axial variation of the transverse shear stress on the
midsurface of the PZT-5A lamina of the †0 deg GE Õ90 deg GE Õ
PZT-5A‡ laminate for „a… mechanical load and „b… electrical load
566 Õ Vol. 67, SEPTEMBER 2000
-
re
the
ely

d or

tion-
ses

at
ress
for
oc-
on.

ary

r
a-
and
en

the
tes
ua-
of
s;
er-
own

coefficients. By keeping a large number of terms in the se
solution, the mechanical displacements, stresses, electric pote
and electric displacement can be computed to any desired de
of accuracy.

We have computed results for a two-ply@0 deg PVDF/90 deg
PVDF# laminate and a three ply@0 deg GE/90 deg GE/PZT-5A#
hybrid laminate that is simply supported and electrically ground
on two opposite edges and subjected to various mechanical
electrical boundary conditions at the remaining two edges. T
effect of either mechanically clamping the edges, simply supp
ing them or leaving them traction free and prescribing either
electric potential or the normal component of the electric displa
ment to vanish, has been delineated. It is observed that the s
tion, valid for thick plates, exhibits sharp variations near the ed
except when they are simply supported and electrically ground

It is found that for the two-ply laminate, the total stored ener
converges monotonically from above for the mechanical load
and from below for the electric loading. When the normal co
ponent of the electric displacement is prescribed to be zero a
edges, the longitudinal distribution of the component of the el
tric displacement in the thickness direction exhibits, near
edges, rapid variations in a region of width 0.1L whereL equals
the span of the square plate. However, the width of such a la
equals 0.02L for the longitudinal distribution of the transvers
shear stress. For a sinusoidal loading on the top surface, the
flected shape of the midsurface is sinusoidal only when all f
edges are simply supported. When the two opposite edges o
upper PZT layer are free but that of the lower one are clamp
most severe deformations occur at points on the interface w
the free edge meets it.

For the three-ply hybrid laminate, the axial variation of th
transverse shear stress on the midsurface of the PZT layer exh
sharp variations in a region of width 0.1L near the clamped and
traction free edges. The maximum value of the transverse s
stress occurs at a point on the interface between the PZT and
substrate when the edges are either simply supported or trac
free but at a point within the 0 deg graphite-epoxy lamina wh
the edges are clamped. The tabulated results presented h
should help establish the validity of various approximate theor
Finally we note that edge singularities, if any, have not been
lineated by using special functions. The present technique se
to capture adequately the sharp variations in the fields near
clamped and traction-free edges but neither gives the order o
singularity nor its precise width. The interested reader should c
sult Ting @26#; Vel and Batra@27# have commented on this for
generalized plane-strain problem.

Table 5 Mechanical displacement, stresses, electric potential,
and electric displacement at specific locations of a square †0
deg GE Õ90 deg GE ÕPZT-5A‡ laminate for various boundary con-
ditions, L 1 ÕHÄ5
Transactions of the ASME
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Combinations for the
Free-Vibration Behaviors of
Anisotropic Rectangular Plates
Under General Edge Conditions
The free-vibration behavior of rectangular plates constitutes an important field in app
mechanics, and the natural frequencies are known to be primarily affected by the bo
ary conditions as well as aspect and thickness ratios. Any one of the three classica
conditions, i.e., free, simply supported, and clamped edges, may be used to mod
constraint along an edge of the rectangle. Along the entire boundary with four ed
there exist a wide variety of combinations in the edge conditions, each yielding diff
natural frequencies and mode shapes. For counting the total number of possible c
nations the present paper introduces the Polya counting theory in combinatorial m
ematics. Formulas are derived for counting the exact numbers. A modified Ritz met
then developed to calculate natural frequencies of anisotropic rectangular plates u
any combination of the three classical edge conditions and is used to numerically v
the numbers. In this numerical study the number of combinations in the free-vibr
behavior is determined for some plate models by using the derived formulas. Resu
corroborated by counting the numbers of different sets of the natural frequencies tha
obtained from the modified Ritz method.@S0021-8936~00!02203-0#
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1 Introduction
The free-vibration analysis of rectangular plates has been

academic and practical interest for many decades, and their
vibration behavior~i.e., natural frequencies and mode shapes! is
considered to be essentially important technical information
structural design. Various books and monographs~@1–4#! reveal
that there exist many published papers since the 1960s on
vibration analysis ofisotropic rectangular plates and that there a
also a reasonable number of results foranisotropicand laminated
plates published in the last two decades.

It is well known that the free-vibration behavior of plates
significantly affected by edge constraints, which are modeled t
cally by using one of the classical conditions of free, simply su
ported, and clamped edges. There are a wide variety of comb
tions along the entire boundary of a rectangle when e
conditions are independently assumed along each of four ed
When one fixes the position of the plate and does not allow i
rotate or flip, there can be 34581 different combinations of
boundary conditions~i.e., three different edge conditions alon
four edges!. If the position is not fixed, however, one case
obtained only by rotating or flipping the plate from the origin
position, and some cases are possible which yield the identica
of natural frequencies.

It is sometimes necessary to grasp the number of possible c
binations of structural response in the design situation, and
same is true when the management of structural design da
considered. The theory of counting has advanced in the are
combinatorial mathematics and has potential applications in e

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS and presented at the ASME 17th Biennial Conference on Mechan
Vibration and Noise, Sept. 12–15, 1999, Las Vegas, NV. Manuscript received b
ASME Applied Mechanics Division, June 24, 1999; final revision, Dec. 2, 19
Associate Technical Editor: J. R. Barber. Discussion on the paper should be
dressed to the Technical Editor, Professor Lewis T. Wheeler, Department of
chanical Engineering, University of Houston, Houston, TX 77204-4792, and wil
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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neering and physical sciences. Among the combinatorial theo
is Polya’s theory of counting~@5,6#! which is well known as a
classical and basic theory for counting problems involvi
symmetry.

In connection with this topic in the field of structural vibration
Leissa@7# presented the natural frequencies of isotropic rectan
lar plates having all possible boundary conditions. It is expec
that the number of different combinations increases as compli
ing effects such as orthotropy or anisotropy are included and
degree of symmetry reduces with the appearance of the princ
material axes that are not parallel to the edges. To the auth
best knowledge, there are no papers dealing with this kind
counting problem in applied mechanics, although the techn
need for solutions of such counting in mechanics seems to
increasing as mentioned.

The present paper deals with the free-vibration analysis of
tropic and anisotropic thin plates having square or rectang
shapes subjected to general boundary conditions by using a m
fied Ritz method, and introduces the Polya counting method
calculating the number of combinations in the free-vibration b
havior. The underlying notion and definition in the countin
theory are explained first, and then formulas, called cyclic po
nomials, are introduced to actually figure out the numbers
various plate models. A Ritz method is modified and used
incorporate arbitrary combinations of the three classical edge c
ditions, and computer code is developed to calculate natural
quencies of the plates for some different models. The validity
the present approach is established by showing the exact m
between the classified number of calculated frequencies and
of the Polya counting estimates.

2 Polya Counting Theory and Application

2.1 Polya Counting Theory. The basic concept in Polya’s
theory of counting~@5,6#! is explained first. Consider a ‘‘permu
tation’’ which is a one-to-one mapping from a setD onto D. For
an illustrative purpose, a setD is defined asD5$1,2,3,4%, and a
permutation of transposing 1→1, 2→4, 3→2, and 4→3 is ex-
pressed asP5(1

1
4
2

2
3

3
4). The identical permutation can be ex

ical
the
9.
ad-

Me-
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E
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pressed asP5(1)(243) to mean~1→1! and ~2→4→3→2!, and
this cycle notation~see, e.g.,@8#! is used hereafter. WhenP1 and
P2 are such two permutations, a composition~product! P1P2 of
P1 andP2 also becomes a permutation.

A setG, which is composed of all permutations applicable to
setD, can be considered as a finite group, because it satisfie
associative law and there are a unit and inverse elements inG. A
kind of set, which is composed of all possible rotations and fl
pings of a plate geometry, becomes such a permutation grou

The next important notion in counting is ‘‘class,’’ which i
explained below by using a simple example. Figure 1~a! shows an
isotropic square plate whose edges are numbered as 1~left-hand
edge!, 2 ~lower edge!, 3 ~right-hand edge!, and 4 ~upper edge!.
Free, simply supported, and clamped edges are denoted her
by F, S, and C, respectively, and for example, two plates show
Fig. 1~b! are represented by CSFF and FCSF.

Suppose that these numbered edges 1, 2, 3, and 4 are fix
the space. The number of combinations in the boundary cond
becomes 34581 when one of the three edge conditions is appl
along each edge. From a viewpoint of structural behaviors, h
ever, two square plates shown in Fig. 1~b! are identical because
one case is obtained just by the rotation of ninety-degree from
other. In contrast, one of the plates shown in Fig. 1~c! can be
represented by neither rotating nor flipping the other. The t
plates shown in Fig. 1~b! are claimed to belong in the sam
‘‘class,’’ while the two in Fig. 1~c! are said to be ‘‘not in the
class.’’ In mathematical words, the present paper deals w
counting the number of classes when a cyclic permutation gr

Fig. 1 Class and nonclass of plates with boundary conditions
Journal of Applied Mechanics
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G acts on a setD. Definitions of finite group, cyclic group, per
mutation, and others are given, for example, in books by Co
@9# and Dornhoff and Hohn@6#.

In the Polya counting theory, a kind of polynomial called ‘‘cy
clic polynomial’’ is used to calculate the number of combination
When a cyclic group, which acts on a finite groupD, is denoted
by G and Ck(G) is a number of elements inG which have the
cyclic numberk, then the cyclic polynomial for a groupG acting
on D is given by

ZG~x!5
1

uGu (k51

uDu

Ck~G!xk. (1)

By using the terminology in the following examples,G is a set of
actions of rotation and flipping over the geometry, anduGu is the
order of a group which is the number of elements inG. The x
represents the number of the different edge conditions applie
each edge.

2.2 Application of the Theory. Figure 2 shows various
plate models used in numerical examples. Plate~a! is an isotropic
square plate, plate~b! is an isotropic rectangular plate and pla
~c! is a specially orthotropic square plate where the principle m
terial axes are parallel to the edges. Plate~d! is a specially ortho-
tropic rectangular plate and plate~e! is a diagonally orthotropic
square plate with the principle material axes being parallel to
diagonals. Plate~f! is a skew orthotropic~anisotropic! square plate
and plate~g! is a skew orthotropic rectangular plate, where t
principal material axis has a certain angle~uÞ0 deg, 45 deg, 90
deg! with respect to the straight edges. The four edges of
plates are numbered 1 through 4, as explained in Fig. 1~a!, and the
set of four edges is given byD5$1,2,3,4%.

For an isotropic square plate~a!, a group of actions in which
the mapped configurations coincide with the original one by ro
tion is

Gr5$~1!~2!~3!~4!,~1234!,~13!~24!,~1432!% (2)

where four elements represent counterclockwise rotations o
deg, 90 deg, 180 deg, and 270 deg, respectively. Similarly
group generated by flipping is

Gf5$~1!~3!~24!,~2!~4!~13!,~12!~34!,~14!~23!% (3)

where the four elements represent flipping with respect to the a
II, I, IV, and III, respectively, in Fig. 1~a!.

A union G5Gr1Gf is a cyclic group with a unit elemen
~1!~2!~3!~4! andGr is a subgroup ofG. By substitution ofG with
Eqs.~2!, ~3! into Eq.~1!, one gets a cyclic polynomial for plate~a!
as
Fig. 2 Numerical examples „solid lines indicate the major principal material axis …
SEPTEMBER 2000, Vol. 67 Õ 569
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~x412x313x212x! (4)

where C4(G)51, a coefficient ofx4, is determined fromone
element~with k54! of ~1!~2!~3!~4! in Eq. ~2!, C3(G)52 is from
two elements (k53) of ~1!~3!~24! and ~2!~4!~13! in Eq. ~3!, and
so on.

When one considers combinations for two different kinds
conditions along each edge, for instance free edge and clam
edge,ZG(2)56 is obtained from Eq.~4! for x52. Likewise, com-
binations of ZG(3)521 and ZG(4)555 can be calculated fo
three ~e.g., F, S, and C! and four ~e.g., F, S, C, and an elasti
constraint of some degree! edge conditions, respectively.

For plate ~b!, the axial symmetry about the III and IV axe
disappear andGr andGf become

Gr5$~1!~2!~3!~4!,~13!~24!% (5a)

Gf5$~1!~3!~24!,~2!~4!~13!% (5b)

The union ofG5Gr1Gf determines a cyclic polynomial for thi
plate, andZG(3)536 is given forx53. Although the reference o
Leissa@7# claims that 21 cases~not 36 cases! exist for a rectan-
gular plate, the aspect ratioa/b is varied as necessary in tha
paper, while the aspect ratio is fixed in the present result
ZG(3)536. For example, a FSSF plate with aspect ratioa/b52
is regarded as identical as FFSS plate witha/b50.5 in the
reference~@7#!.

Group ~5! is also applicable to plate~c! ~specially orthotropic
square plate! and plate ~d! ~specially orthotropic rectangula
plate!. It is interesting to note that the number of combinations
isotropic plates differs between the square (a5b) and rectangular
(aÞb) plates, but the specially orthotropic plates show no diff
ence in the number of combination between the two plates.

For diagonally orthotropic square plate~e! where the principal
material axes coincide with diagonals,Gr andGf are

Gr5$~1!~2!~3!~4!,~13!~24!% (6a)

Gf5$~12!~34!,~14!~23!% (6b)

andG5Gr1Gf yields a fewer number of combinations than th
of plate ~c!.

In both plates~f! and ~g!, where skew orthotropy is assume
~not diagonally!, flipping does not exist, i.e.,Gf5f ~empty set!.
All these cyclic polynomials and values ofZG(x) with x52, 3
and 4 are presented in Table 1 for plates~a! through~g!.

3 Free-Vibration Analysis of Anisotropic Plates
A semi-analytical solution is developed here by using

method of Ritz for the verification of the counting results in th
numerical study, because such an analysis-based solution h
low computational cost and easiness in varying parameters
contrast to numerical methods such as the finite element met
Figure 3 shows an anisotropic rectangular plate and the coord
system where the major and minor principal axes are denote

Table 1 Cyclic polynomials and the number of combinations
for plate models shown in Fig. 2.
570 Õ Vol. 67, SEPTEMBER 2000
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the L and T axes. The dimension of the plate is given bya3b
3h ~thickness!. The stress and strain relation is given by

H sL

sT

tLT

J 5FQ11 Q12 0

Q12 Q22 0

0 0 Q66

G H «L

«T

gLT

J (7)

where the matrix elements are given by

Q115
EL

12nLTnTL
, Q225

ET

12nLTnTL
,

Q125
nTLEL

12nLTnTL
, Q665GLT (8)

with EL andET are moduli of longitudinal elasticity in theL and
T directions, respectively,GLT is a shear modulus andnLT is a
Poisson’s ratio. Relation~7! can be transferred to

H sx

sy

txy

J 5F Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

G H «x

«y

gxy

J (9)

where the stresses and strains are given with respect to thex and
y-axes~@10,11#!.

If one considers the small-amplitude~linear! free vibration of a
thin plate, the deflectionw may be written by

w~x,y,t !5W~x,y!sinvt (10)

whereW is the amplitude andv is a radian frequency of the plate
Then, the maximum strain energy due to the bending is expre
by

Umax5
1

2 E E
A
$k%TFD11 D12 D16

D12 D22 D26

D16 D26 D66

G $k%dA (11)

where the Di j are the bending stiffnesses defined byDi j

5(h3/12)Q̄i j and $k% is a curvature vector

$k%5H 2
]2W

]x2 2
]2W

]y2 22
]2W

]x]yJ
T

. (12)

The maximum kinetic energy is given by

Tmax5
1

2
rv2E E

A
W2dA (13)

wherer is the mass per unit area.
For the sake of simplicity, nondimensional quantities are int

duced as

j5
2x

a
, h5

2y

b
~nondimensional coordinates!,

Fig. 3 Rectangular plate and coordinate system
Transactions of the ASME
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a5
a

b
~aspect ratio!,

D05
ETh3

12~12nLTnTL!
~reference stiffness!, (14)

di j 5
Di j

D0
~nondimensional stiffness!

V5va2A r

D0
~ frequency parameter!.

The next step in the Ritz method is to assume that the ampli
is

W~j,h!5 (
m50

M21

(
n50

N21

AmnXm~j!Yn~h! (15)

whereAmn are unknown coefficients, andXm(j) and Yn(h) are
the functions modified later so that any kinematical boundary c
ditions are satisfied at the edges~@12,13#!.

After substituting Eq.~15! into the energies~11! and ~13!, the
stationary value is obtained by

]

]Am̄n̄
~Tmax2Umax!50 ~m̄50,1,2, . . . ; n̄50,1,2, . . . !.

(16)

Then the eigenvalue equation that contains the frequency pa
eterV is derived as

(
m50

M21

(
n50

N21

@d11I
~2200!1a2d12~ I ~2002!1I ~0220!!1a4I ~0022!

12ad16~ I ~2101!1I ~1210!!12a3d26~ I ~0121!1I ~1012!!

14a2d66I
~1111!2V2I ~0000!#mm̄nn̄•Amn50

~m̄50,1,2, . . . ; n̄50,1,2, . . . ! (17)

whereI are the products

I mm̄nn̄
~pqrs!5fmm̄

~pq!
•fnn̄

~rs! (18)

of the two integrals defined by

fmm̄
~pq!5E

21

1 ]~p!Xm

]j~p!

]~q!Xm̄

]j~q! dj. (19)

Equation~17! is a set of linear simultaneous equations in terms
the coefficientsAmn , and the eigenvaluesV may be extracted by
using existing computer subroutines.

The analytical procedure developed thus far is a standard
tine of the Ritz method, and the modification is explained next
as to incorporate arbitrary edge conditions into the amplitu
W(j,h). In the traditional approach, for example, using the be
functions forXm(j) andYn(h), many different products of regu
lar and hyper trigonometric functions exist for arbitrary conditio
and it is difficult to make a unified subroutine to calculate all
the various kinds of integrals.

The present approach introduces a kind of polynomial

Xm~j!5jm~j11!B1~j21!B3

(20)
Yn~h!5hn~h11!B2~h21!B4

where B1 , B2 , B3 , and B4 are ‘‘boundary indices’’~@12,13#!
which are added to satisfy the kinematical boundary conditi
and are used in such a way asB150 for F ~free edge!, 1 for S
~simply supported edge!, and 2 for C ~clamped edge!. To the
CSFF plate shown in Fig. 1~b!, for instance,B152, B251 and
B35B450 are applied. With the boundary indicesBi ’s and Eqs.
~20!, the method of Ritz can accommodate arbitrary sets of
edge conditions, and the integrals~19! can be exactly evaluated
Journal of Applied Mechanics
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4 Results and Discussions

4.1 Accuracy of the Ritz Solution. Frequency parameters
are calculated by using Eq.~17!, and accuracy of the solutions
should be tested before counting different sets of natural frequ
cies to estimate the number of combinations. The material c
stants used in the examples are taken~@11#! for graphite/epoxy
composite as

G/E material: EL5138 Gpa, ET58.96 Gpa,

GLT57.1 Gpa, nLT50.30

Table 2 presents a convergence study for the frequency par
etersV1;V4 ~lowest four modes! of Plate~f!, i.e., a skew ortho-
tropic square plate with the major principal axis ofu530 deg.
Four different boundary conditions, FFFF, SSSS, CCCC, a
CFFF ~cantilever!, are considered. It is clearly seen that the fr
quencies monotonically decrease from above as the numbe
terms is increased in Eq.~15!, and converge almost with the fou
significant figures when the termsM5N510 in the series are
taken. Based on the test results, the frequencies are calcu
hereafter by using theM3N510310 solutions.

The solution accuracy is also validated by comparison of
present values with others for plate~a!. Table 3 compares the
present results with the series solutions of Gorman@14–16# and
the exact solution~@7#! for isotropic square plates. As shown i
the table, the agreement is excellent for all the results compa
and the validity of the analytical method is established.

4.2 Verification of the Polya Theory With Numerical Ex-
periment. Considering the edge conditions of F, S, and C, na
ral frequencies are calculated for the plate models shown in F
2~a!–~g!. Calculations of frequencies are done for all the 34581

Table 2 Convergence study of frequency parameters V of
skew orthotropic square plates „plate „f… in Fig. 2, uÄ30 deg,
GÕE material …

Table 3 Comparison of frequency parameters V of isotropic
square plates „plate „a… in Fig. 2 …
SEPTEMBER 2000, Vol. 67 Õ 571
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cases, and each new set of frequencies is numerically compar
the previously calculated values to identify whether these set
boundary conditions belong to the same class.

Table 4 presents classified boundary conditions obtained in
numerical study. For plate~a!, 21 classes are obtained startin
from ~1! FFFF. The class is numbered up to the most constrai
case of~21! CCCC. This number of 21 is identical withZG(3)
521 in Table 1. It is easily understood that~2! FFFS, FFSF,
FSFF, SFFF yield the identical frequency values for a square
tropic plate. It is also interesting to know that eight sets of ed
conditions give the identical frequency values for~5!, ~10!, and
~12!. For plates~b!, ~c!, and~d!, where some axes of symmetry a
lost, the frequencies for~2! FFFS, FSFF are no longer the same
~4! FFSF, SFFF, and 36 different classes are obtained.

In contrast, for plate~e! where there are the principal materi
axes on the diagonals, the number of classes reduces to 27,
ever, this number is still more than plate~a! due to the diagona
orthotropy. This difference is seen by observing that~4! FFSS,
FSSF, SFFS, SSFF~two edges simply supported! in plate ~a!
splits into~4! FFSS, SSFF~i.e., the major material axis is locate
so as to bisect the right angle at the corner of the adjacen
edges! and~9! FSSF, SFFS~i.e., the major material axis is in th
direction of a diagonal connecting two corners made by the F
S edges! in plate ~e!.

The maximum number of combinations is found for plates~f!
and ~g!. Each class in these plates has at most two sets, whe
the first two symbols are interchanged with the last two symb
such asFF andFS in ~2! FFFS, FSFF,FF andFC in ~3! FFFC,
FCFF, and so on.

Table 4 Classified boundary conditions by numerical study
for various plate models shown in Fig. 2
572 Õ Vol. 67, SEPTEMBER 2000
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As is clearly seen, the numbers of combinations for plate~a!,
plates~b!, ~c!, ~d!, plate~e! and plates~f!, ~g! are 21, 36, 27, and
45, respectively, and exactly coincide with the numbers forx53
in Table 1 estimated by using the Polya counting theory.

Table 5 presents frequency parametersV of the specially ortho-
tropic plate~plate ~c! in Fig. 2! obtained for the 36 combination
classified in Table 4. The lowest six frequencies are tabulated
future comparison in the order listed in Table 4. Three frequenc
are zero due to rigid-body motions of translation and rotations
~1! FFFF, and the first frequency is zero due to that of rotation
~2! FFFS, FSFF and~4! FFSF, SFFF. The frequencies tend
increase, as one sees rows going down from the top row of~1!
FFFF to the bottom of~36! CCCC in the table and the total con
straints along the edges are gradually strengthened.

5 Conclusions
The Polya counting theory in combinatorial mathematics is

troduced in order to solve a type of mechanics problem wh
may be encountered in plate structural design. The coun
method, which is based on the group theory, is used to determ
the number of combinations in the boundary conditions in c
nection with the plate vibration behaviors. For various square
rectangular plate models with isotropic, specially orthotropic, a
skew orthotropic material properties, the number of combinati
obtained by the counting theory is numerically verified by calc
lating natural frequencies of the plates. It is hoped that this

Table 4 „Continued …
Transactions of the ASME
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Table 5 Frequency parameters V of specially orthotropic
square plates „plate „c… in Fig. 2, G ÕE material …
Journal of Applied Mechanics
proach may be extended to counting problems of more com
cated geometry, modeling, and material properties in mechan
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Numerical Computation of
Differential-Algebraic Equations
for the Approximation of Artificial
Satellite Trajectories and
Planetary Ephemerides
The principle of virtual work and Lagrange’s equations of motion are used to constru
system of differential equations for constrained spatial multibody system modeling
differential equations are augmented with algebraic constraints representing the sy
being modeled. The resulting system is a high index differential-algebraic equation (D
which is cast as an ordinary differential equation (ODE) by differentiating the constr
equations twice. The initial conditions are the heliocentric rectangular equatorial ge
alized coordinates and their first time derivatives of the planets of the solar system a
artificial satellite. The ODE is computed using the integration subroutine LSODAR
generate the body generalized coordinates and time derivatives and hence produ
planetary ephemerides and satellite trajectories for a time interval. Computer simula
and graphical output indicate the satellite and planetary positions and the latter ma
compared with those provided in the Astronomical Almanac. Constraint complian
investigated to establish the accuracy of the computation.@S0021-8936~00!03403-6#
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1 Introduction
Planar and spatial multibody modeling and constrained va

tional dynamics have been pursued substantially since 1980.
thors such as Haug@1#, Nikravesh@2#, and Shabana@3,4# have
studied rigid and flexible planar and spatial systems using var
software tools, for example, ADAMS~Automatic Dynamic
Analysis of Mechanical Systems! ~@5,6#! DADS ~Dynamic Analy-
sis and Design System! ~@7#!, and MADYMO ~MAthematical
DYnamical MOdels! ~@8#! and have contributed modeling, com
putation, and software design techniques to the field. Here
authors use their own planar and spatial constrained variati
system software,Multibody System~@9,10#!, for computing satel-
lite motion and planetary ephemerides of the solar system
recording the accuracy of the integration method employed.

Multibody system equations may be cast as different
algebraic equations~DAEs!, since the system equations are au
mented with algebraic constraints defining the geometry of
system. Simeon et al.@11# investigates thoroughly the theory an
computation of DAEs. The integration package used by Simeo
ODASSL ~@12#! and differs from LSODAR in that the constrain
equations need not be differentiated thereby reducing nume
inaccuracy.

Brenan et al.@12# introduce the basic types of DAEs, con
strained variational problems, the theory, solvability and ind
concept, linear and nonlinear systems, numerical methods inv
ing order reduction and stiffness, software including DAS
based on the BDF methods for DAE computation, algorithm
applications, and examples of DAEs in problems involving rig
body systems, trajectory control, electrical networks, and
method of lines.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Divisio
March 31, 1999; final revision, May 5, 1999. Associate Technical Editor: A. A. Fe
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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Studies concerning the theory and computation of DAEs h
been documented in@11–22#. Involved mechanical examples o
DAEs may be found in@23–26#.

Planetary ephemerides have been computed by various res
groups including space agencies and J.P.L. and this informatio
made available in the public domain see@27# and the Astronomi-
cal Almanac@28#. The data is accurately provided and involv
computing phenomena such as planetary aberration, nutations
liberations into consideration; see@29# for further details about
spherical astronomy. Software developed by J.P.L., see@30# and
@31#, provides detail about computation of planetary ephemeri
and has evolved to produce the more recent DE200~Development
Ephemeris 200!, DE202, DE405, and DE406 lunar and planeta
ephemerides.

The purpose of this work is to investigate the numerical ac
racy of integrating multibody system equations, by computing
motion of an artificial satellite and ephemerides of the planets
the solar system~that of the Earth is in fact the Earth-Moo
barycenter! given initial ecliptic orbital elements or heliocentri
rectangular equatorial coordinates provided in the Astronom
Almanac @28#. The computation of the generalized coordinat
and their time derivatives results in the ephemerides and
achieved through integration of the governing multibody syst
ODE. The software,Multibody System, used to compute the tra
jectories employs the use of generalized Cartesian coordinates
publicly available code found in the packages LAPAC
LINPACK @32# and the numerical integration subroutine LSO
DAR @21#; this allows automatic step-size selection to cont
local error tolerances, method switching, singularity detecti
number of function evaluations, and additional information to
obtained in order that efficiency and accuracy of the numer
computation may be compared against other schemes.

The main aim is to investigate constraint compliance throu
out the computation to determine thedrift of the constraint equa-
tions; for different choices of relative error tolerance one m
observe better constraint compliance. Earlier work, Fox et al.@9#,
involving collision of hard and soft bodies indicated particul

,
rri.
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li-
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numerical difficulties with constraint compliance. This study w
chosen because the dynamics are very smooth, but there are
theoretical constraints that need to be satisfied.

The rest of the paper is divided as follows. Section 2 provid
the multibody system equations using the principle of virtual wo
and Lagrange’s equations. Section 3 shows how a high in
DAE may be cast as the underlying ODE suitable for numer
integration. Section 4 introduces the spherical astronomy conc
ing calculation of planetary ephemerides and satellite trajecto
Section 5 presents the numerical results and computational de
concerning the integration of the underlying ODE of the orbi
system and finally Section 6 reviews the researched ideas.

2 Spatial Multibody System Equations
The general equations of dynamic equilibrium for multibo

systems can be formulated using generalized Cartesian co
nates, the principle of virtual work and Lagrange’s equations
motion. The following derivation follows closely the work of Ni
kravesh@2# and Shabana@3,4# whose formulations of the resultin
differential equations of motion can, in fact, be shown to
equivalent.

The Euler parameter method involves Euler parameters ra
than Euler angles and is discussed thoroughly in@33–36# and@3#.
The standard Cartesian generalized coordinates are used t
scribe the position of a local body coordinate system which mo
with the body, and the Euler parameters may be used as the
eralized coordinates for the orientation of a body coordinate s
tem with respect to the global frame, that is

Q i5~u0 ,u1 ,u2 ,u3! i
T (2.1)

and the complete set of generalized coordinates are

qi5@Rx Ry Rz u0 u1 u2 u3# i
T . (2.2)

The theoretical constraint equation for bodyi is

C~qi ,t !5Q i
TQ i2150. (2.3)

The kinetic energy of bodyi is an integral over the volumeVi

Ti5
1

2 EVi

r i ṙ i
Tṙ idVi (2.4)

where r i is the global position vector of the bodyi coordinate
system, and it may be shown that

Ti5
1

2
ṘimRR,iṘi1

1

2
Q̇ imQQ,iQ̇ i . (2.5)

On substitution of this expression into the Lagrange equation
motion

d

dt S ]Ti

]q̇i
D2

]Ti

]q̇i
5Q̄i

T (2.6)

one arrives at the equations of motion for bodyi, which are

FmRR,i 0

0 mQQ,i
GF R̈i

Q̈ i
G5F Q̄Ri

Q̄Q i

G1F 0

22Ġ̄i
T ĪQQ,iv̄ i

G . (2.7)

Augmenting these equations with the constraint equations yi
the spatial augmented system equations for bodyi

F FmRR,i 0

0 mQQ,i
G F 0

2Q i
TG

@0 2Q i # 0
G F R̈i

Q̈ i

l i

G5F Qe,Ri

Qe,Q i

22Q̇ i
TQ̇ i

G1F 0
Qv,Q i

0
G

(2.8)

from which one may assemble the complete system of equati
repeated here as
Journal of Applied Mechanics
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F M Cq
T

Cq 0
G F q̈

l G5FQe

Qd
G . (2.9)

For further information on the this technique one may consult@2#
and @3#.

3 Differential Algebraic Equations
Constrained variational systems usually involve different

equations augmented with algebraic constraints involving sys
variables for which the equations are being computed and he
these systems can be represented by DAEs. Petzold and
authors have performed substantial research on the solvability
computation of DAEs,@12# address the foundations of the theor
computation and applications of DAEs and include many ref
ences on earlier work in this field; other important contributions
the study of DAEs were given in the introduction. A DAE may b
of the form

F~ ẋ,x,t !50. (3.1)

The DAE of the multibody system considered here is of the fo

F I 0 0

0 M
]CT

]q

0 0 0

G F q̇
v̇
ṁ
G5f~q,t !5F v

Qe

C~q,t !
G , (3.2)

whereṁ5l and v̇5q̈. The matrix on the left-hand side is, how
ever, singular, differentiating the third equation above with
spect to time twice, yields

F I 0 0

0 M S ]C

]q D T

0
]C

]q
0
G F q̇

v̇
ṁ
G5f~q,q̇,t !5f~q,v,t !, (3.3)

which has a nonsingular leading matrix providing]C/]q is of full
rank for all time. The following definition classifies a DAE wit
respect to differentiation of the system equations given by
~3.1!.
Definition: The minimum number of times that all or part of th
DAE F( ẋ,x,t)50 must be differentiated with respect to t in orde
to determineẋ as a continuous function ofx and t, for t in some
interval, is the index of the DAE~@12#!.

The original system has been differentiated twice and the s
stitution of ṁ5l can be considered as an additional different
tion. This results in the ODE shown in Eq.~3.3! and hence the
original system Eq.~3.2! is regarded as a DAE of index three
Note that herem(t)5*0

t l(t)dt ~and hencem(0)50! is com-
puted by the ODE software. To findl(t), m(t) must be differen-
tiated, this is, however, a slightly unstable process. Note thatl(t)
does not need to be treated this way, as its value can be obta
directly by solving Eq.~2.9!, at each time-step. Recording th
value ofl(t) at the requested time values passed to standard O
software requires modifications to the software. Purpose-b
software~DAE-index 2! can be made to handle this.

Petzold et al.@12# discuss the computational/numerical difficu
ties that may arise as a result of differentiating the constra
equations; the constraint equations may not be satisfied as
integration progresses and excessive differentiation of the c
straints is not recommended. Other computational software s
as DASSL, see@15# and @16#, is also introduced in@12# and re-
quires only the constraint equationsC(q,t)50, be augmented to
the differential equation, rather than the user having to supply
twice differentiated constraint equationsQd as in Eq.~3.3! and
Eq. ~2.8!. This software differs from the LSODA line of integra
tion subroutines of@20# in ~1! the interpolation method of previ
ous solution points required by BDF formulas,~2! the implemen-
SEPTEMBER 2000, Vol. 67 Õ 575
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tation of these formulas, and~3! the time-step size method orde
determination and constraint compliance or error control used.
further information regarding algorithms and numerical strateg
see@12#.

4 Spherical Astronomy
Green@29# and Danby@37# provide a detailed introduction to

spherical astronomy which includes information on spherical
ometry, the celestial sphere, reference frames, planetary or
heliocentric and geocentric coordinate systems, nutation, librat
and time. Carroll and Ostlie@38# provide an introduction to astro
physics and discuss the celestial sphere, celestial mechanic
cluding Newtonian mechanics, and Kepler’s Laws. Kibble@39#
pursues the laws of conservation of energy and the radial en
equation in his introduction of gravitational force and orbital m
chanics and finally@40# provides a modern proof of the Law o
Gravity and shows how this implies Kepler’s Second Law that
planetary orbit is an ellipse with the sun at one focus’’~although
this is regarded as Kepler’s First Law by@38#!. The following
material is based on the work of the authors stated above
provides a brief introduction to the theory of celestial mechan
required in the extension of the codeMultibody System, used to
mathematically model and numerically compute the ODE int
duced in Sections 2 and 3.

The codeMultibody Systemis a body of code written in C,
referencing appropriate mathematical software like LSODAR, a
parts of LAPACK. A user adds the appropriate dynamical eq
tions and twice differentiated constraint equations, in the form
the matrices of Eq.~2.9! and allows computation of the system fo
the variables of interest.

The Encyclopedia of Planetary Sciences@41# provides the fol-
lowing definition; ‘‘An ephemeris~plural: ephemerides! is defined
to be a tabular listing of the position of a celestial body at regu
intervals.’’ Nutation is defined by@29# as ‘‘the periodic variations
in the position of the true pole~of the orbiting body! about its
mean position’’ and physical libration is defined by@29# as the
oscillation of the mean rotation axis of a body. As mention
earlier, work at JPL see@27#, @42#, @30#, and@31# has resulted in
the production of planetary ephemerides including: DE1
DE200, DE202 involving nutations but not liberations, DE4
involving nutations and liberations and DE406 including neith
nutations nor liberations. Here no liberations or nutations of a
orbiting body will be taken into consideration in the computati
of the body generalized coordinates and their time derivatives

4.1 Coordinate Systems. In order to compute the planetar
and satellite trajectories a reference frame or coordinate syste
required. Here the heliocentric celestial sphere is chosen, u
which astronomical quantities of the celestial bodies concern
may be measured. Illustrated in Fig. 1 is such a sphere, whej,
h, andz, are the heliocentric rectangular ecliptic coordinates. T
first point of Aires, or the vernal equinox isC. The ascending
nodeL, defines the position on the ecliptic where the planeta
body orbit progresses from south to north and if the inclination
the orbital planei, with respect to the ecliptic is between 0 and
deg, then the orbit is regarded as direct, otherwise it is known
retrograde. The longitude of the ascending nodeL, is V and is
measured eastward from the vernal equinoxC, along the ecliptic.
A is the position of the orbiting body at the time of perihelion,P
is the position of the orbiting body at some timet. C, U, andK,
form an orthogonal triad, the argument of perihelion isv
5/LA and finally n5/PSA is the true anomoly, that is, th
angle from the point of perihelion to the orbiting body located
P at some timet. The Astronomical Almanac@28# provides the
parameters (a,e,i ,V,v) for the purpose of calculation of plan
etary ephemerides. The semimajor axis of the orbital ellipse ia,
e is the orbital eccentricity, the mean anomoly isM5L2(v
1V), the true anomoly may be computed as
576 Õ Vol. 67, SEPTEMBER 2000
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n5M1S 2e2
e3

4 D sin~M !1S 5e2

4 D sin~2M !1S 13e3

12 D sin~3M !

1... (4.1)

and the true distance of the orbiting body from the sun is

r 5
a~12e2!

~11e cosn!
. (4.2)

Using the cosine formula one obtains the heliocentric rectan
lar ecliptic coordinates of an orbiting body as follows:

r5F j
h
z
G5rF cos~CP!

cos~UP!

cos~KP!
G

5rF cos~n1v!cos~V!2sin~n1v!sin~V!cos~ i !
cos~n1v!sin~V!1sin~n1v!cos~V!cos~ i !

sin~n1w!sin~ i !
G . (4.3)

If the heliocentric rectangular equatorial coordinates are requ
then these may be obtained from the ecliptic coordinates de
mined above using the following approach. Figure 2 may
found in@29# and indicates an angular tilt of the ecliptic plane a
the equatorial plane known as the obliquity of the ecliptic, d

Fig. 1 Heliocentric celestial sphere

Fig. 2 Relation between equatorial and ecliptic coordinates
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Table 1 Heliocentric initial coordinates „AU… and velocity components „AU dÀ1
… of an artificial satellite
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noted«. The ecliptic spherical coordinatesl andb are the ecliptic
longitude and latitude, respectively, and the equatorial sphe
coordinatesa andd are the equatorial right ascension and dec
nation, respectively. The heliocentric rectangular ecliptic coo
nates arej, h, and z and the heliocentric rectangular equator
coordinates arex, y and z; these are related by the followin
equation:

F x
y
z
G5Ax~«!F j

h
z
G5F 1 0 0

0 cos« 2sin«

0 sin« cos«
G F j

h
z
G (4.4)

whereAx(«) is the rotation matrix of a vector through the angle«
about thex[j-axis.

It may be necessary to obtain the geocentric~Earth centered!
coordinates of the orbiting bodies rather than use the helioce
coordinates. Now,r P,S5rE,S1r P,E , wherer P,S is the heliocentric
position vector of the planet under consideration with respec
the Sun,rE,S is the heliocentric position vector of the Earth wi
respect to the Sun andr P,E is the geocentric position vector of th
planet with respect to the Earth; naturally2rE,S5rS,E . Finally if
the geocentric right ascension and declination,a and d, respec-
tively, of the orbiting body are known together with the rad
distanceir i ~obtainable by Pythagoras’s theorem!, then

r P,E5r P,S2rE,S5ir iF cosd cosa
cosd sina

sind
G . (4.5)

Section E3 of the Astronomical Almanac@28# provides both the
orbital elements and the heliocentric rectangular equatorial c
dinates for the planets of the solar system on a particular Ju
day, here Julian day 2450840.5 is considered; these coordin
form the initial conditions of the multibody system equations.

4.2 System Forces. Newton used Kepler’s first two laws to
show that they implied his Law of Universal Gravitation. Kepler
First Law ~a planet orbits the Sun in an ellipse, with the Sun
one focus of the ellipse! and Kepler’s Second Law~a line con-
necting a planet to the Sun sweeps out equal area in equal
intervals! are derived in@38#. For details and proofs of the relatio
between Kepler’s Laws and Newton’s Law of Universal Gravi
tion, see@40#. The magnitude of the gravitational force is

Fci j
5

Gmimj

ir pi j
i2 . (4.6)

the gravitational constantG56.672310211 m3 kg21 s22, mi , i
51, . . . ,NB, are the masses,r pi j

is the position vector joining the
center of masses of the bodies concerned.

The points on the bodies between which the gravitational fo
is acting are the centroids of the bodies, hence the local pos
vectorsūpi

andūpj
of these centroids are identically zero; centro

dal body coordinates are used. From the modeling performe
@9#, @10#, and @4# the generalized forcesQe,i and Qe, j acting on
bodiesi and j are, respectively,
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Qe,i5FQR,i

Qu,i
G5Fci j F I

ūPi

T Au,i
T G r pi j

ir pi j
i

and

Qe, j5FQR, j

Qu, j
G

52Fci j F I
ūPj

T Au, j
T G r pi j

ir pi j
i

, (4.7)

which can be suitably simplified asūpi
5ūpj

50.

5 Results
The authors’ general, spatial, multibody dynamics softw

Multibody Systemcan be employed to produce planetary ep
emerides and satellite trajectories with arbitrary accuracy gi
the number of significant figures found in the provided init
conditions and physical planetary data. The software can als
used for animation purposes, but here graphical and tabular ou
is more convenient and found below are graphs of planetary
satellite positions and tables comparing computed data to
found in the Astronomical Almanac of 1998.

The multibody model involves 11 bodies: Sun, Mercury, V
nus, Earth-Moon barycenter, Mars, Jupiter, Saturn, Uranus, N
tune, Pluto, and one artificial geosynchronous satellite. The in
conditions for the planets are provided by the Astronomical
manac@28# and the satellite initial conditions are given in Table
in AU ~Astronomical Unit! and AU d21.

The satellite moves in a geosynchronous orbit with an orb
period of 86,400 seconds and a rotational angular velocityv
52p/86400 rad s21, allowing equipment to be continuously fac
ing a fixed location on Earth. The satellite velocityv at perihelion,
is found using

v5S GME~11e!

a~12e! D 1/2

, (5.1)

where the semimajor axisa, is given by

a5S G~ME1M sat!P
2

4p2 D 1/3

, (5.2)

the orbital periodP is 86,400 s, the eccentricitye50 for a geo-
synchronous orbit and the radial distance of an orbiting body
perihelion isr 5a(12e). The angular coordinates of the satelli
are given by Eq.~2.1! where the angle through which the satelli
rotates about its axis of rotation isu5vt rad.

The constraint equations to be augmented to the system e
tions are given by Eq.~2.3!, whereQ is the vector of Euler pa-
rameters introduced in Section 2. Constraint compliance inve
gated here involves checking the following equality:

iC~q,t !2C~q,0!i50 (5.3)
Table 2 Constraint compliance norms, for differing values of RTOL over time
SEPTEMBER 2000, Vol. 67 Õ 577
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for the duration of the computation. Table 2 indicates the value
the norm shown in Eq.~5.3! after a time interval.

If xapp is the approximate value of a variable whose true va
is xtr then @41# indicates that the absolute error iseabs5xapp2xtr
and the relative error iserel5(xapp2xtr)/xtr . Given the value of
the relative error tolerance parameter RTOL, one can determ
the absolute error tolerance parameter for bodyi as

ATOLi5RTOLi~Rx,i1Ry,i1Rz,i !
1/2 (5.4)

whereRx,i , Ry,i , andRz,i are the heliocentric rectangular equ
torial coordinates of the center of mass of thei th planetary body.

Figure 3 shows the planetary trajectories for the Sun, Mercu
Venus, Earth-Moon barycenter, and Mars for 365 days, compu
with a time-step size of 1000 seconds. The sidereal orbital per
~years! provided by @38# are: Mercury 0.2408, Venus 0.6152
Earth 1.0000, and Mars 1.8809. The periodicity of the inner pl
ets is shown and it may be observed that the Sun is pulled a
from its initial position by the other orbiting bodies.

The periodicity of the satellite is shown in Fig. 4 to be 24 hou
over a five-day time interval. The position of the satellite wi
respect to the Earth is clearly sinusoidal in thex andy-coordinates
but grows linearly in a sinusoidal fashion in thez-coordinate; this
is predominantly due to the force of the sun. The satellite Eu
parametersu05cos(u/2) andu35v3 sin(u/2) show the rotation of
the satellite about its axis of rotationv and are sinusoidal as
expected; the angular velocityu̇5v and henceu5vt.

Fig. 3 Planetary trajectories for 365 days
578 Õ Vol. 67, SEPTEMBER 2000
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The final positions and velocities of the ten major planets
recorded after 200 and 360 days of computation and are show
Table 3. Computation began at Julian day 2450840.5 and a
200 days at Julian day 2451040.5 and after 360 days Julian
2451200.5, the accuracy of the computed data, coincident w
that of the Astronomical Almanac@28# is shown in bold. The
initial conditions for position and velocity are given to seven s
nificant figures in the Astronomical Almanac@28#, but the masses
used are given at worst to only four significant figures. Hence
accuracy reached by the softwareMultibody Systemis satisfactory
given the data used.

In order to reduce numerical inaccuracy in the computation,
should divide the system equations by the body massmi or the
body inertia tensorĪ uu,i since it is a diagonal matrix~uniform
spherical bodies have been used!. Equation ~2.8! indicates the
dynamics of the position and angular components as a syste
differential algebraic equations.

One may also note that for certain values of time and ang
velocity v, the submatrixmuu,i may not be invertible and henc
the mass matrixM i alone, may not be invertible, although th
coefficient matrix shown in Eq.~2.9! is still invertible. The fol-
lowing matrix inversion technique for the computation of the sy
tem equations may not be used since it requires that the uppe
block A, be invertible for all time.

Fig. 4 Satellite periodicity about Earth
Transactions of the ASME



Table 3 „a… Heliocentric coordinates „AU… and velocity components „AU dÀ1
… of orbiting bodies at Julian day 2451040.5; „b…

Heliocentric coordinates „AU… and velocity components „AU dÀ1
… of orbiting bodies at Julian day 2451200.5
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C DG21

5FA211ED21F 2ED21

2D21F D21 G (5.5)

whereD5D2CA21B, E5A21B and F5CA21, see@43#, @44#,
and @45# for additional matrix theory.

One should also be aware that there are four Euler parame
that is, four angular generalized coordinates per body and t
should be no more angular constraint equations per body
there are angular coordinates per body in order to avoid a dim
sionally inconsistent system of equations.

Future work may involve including the moons of Mars, Jupit
Saturn, Uranus, Neptune, and Pluto, larger bodies of the aste
belt, nutations and librations of the major planets, and a la
artificial satellite communication network. Optimal control ma
be used to obtain better estimates of masses; for example, in o
to improve the fitting of the model to any accurate sightings m
after t50, using techniques in@46#.

6 Conclusions
The principle of virtual work and Lagrange’s equations we

used to obtain a differential equation representing the spatial
namics of an orbital multibody system. The inherent constra
involved in this formulation and the additional constraints defi
ing system structure were augmented to the differential equat
to form an index 3 DAE. The twice differentiation of the con
straint equations allowed the DAE to be cast as the underly
ODE representing the orbital/planetary motion. The numer
computation of the system equations was performed using
softwareMultibody System, which incorporates the variable accu
racy integrator LSODAR@20#. The resulting generalized coord
nates and their time derivatives form the planetary ephemer
and artificial satellite trajectories and it was shown that accur
of computation is within a range of three to five significant figur
of the data provided by the Astonomical Almanac after simulat
times of 200 and 360 days. Tabulated constraint complia
Journal of Applied Mechanics
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shows that with a relative error tolerance of 10210, the norm is
less than 1026 after 360 days of simulation. Future work ma
involve increasing the system size, computing nutations and lib
tions of the major planets, and using optimal control to allo
better fitting of the system parameters~e.g., masses! of the model
to the data.
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Steady-State Limit of
Elastoplastic Trusses for the
Plastic Shakedown Region
For elastoplastic trusses under quasi-static cyclic loading, a method is presente
finding the steady-state limit that bounds the plastic shakedown and ratchetting reg
In the plastic shakedown region, an assumption employed in the previous approach
finding the steady-state limit can be invalid in many circumstances. Although strai
versals were assumed to occur only at load reversals, yielding of an element exhi
plastic shakedown may cause strain reversals in other elements. This difficulty is
come by relaxing this assumption so that the strain reversals due to yielding are
into account. Numerical examples showed that the present method can find the s
state limit even when strong effects of geometrical nonlinearity exist.
@S0021-8936~00!01201-0#
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1 Introduction
When a structure is subjected to initial constant loads and s

sequent cyclic loading, its response is classified as follows~see,
for instance,@1–4#!; ~1! convergent behavior to theelastic shake-
down ~ESD! or the classical shakedown, which is a cyclic and
fully elastic response after some histories of plastic deformatio
~2! convergent behavior to theplastic shakedown~PSD! or the
alternating plasticity, where a structure behaves cyclically an
plastic deformations are included in its steady cycle; and~3! the
ratchettingor the incremental collapse, in which plastic deforma-
tions grow with respect to the number of loading cycles. If exc
sive deformations are induced by the ratchetting, the effec
geometrical nonlinearity becomes significant and total or lo
buckling may occur@5–8#. Including these cases, as called in o
earlier work@9# the phenomenon characterized by the unboun
growth of plastic deformations is referred to ascyclic instability
~CI! in this paper. Classification of these types of behavior
schematically illustrated in Fig. 1, wherec and l0 indicate, re-
spectively, the amplitude of cyclic loading and the magnitude
constant loads. The regions in which the ESD, PSD, and CI t
place are called the ESD region, the PSD region, and the C
gion. The boundary between the shakedown regions and th
region is referred to as the shakedown limit.

To design structures that may suffer plastic deformations un
cyclic loading, it is very important to obtain the shakedown lim
For this reason, a number of studies have been conducte
structural responses under quasi-static cyclic loading. The
proaches employed in these studies are roughly divided into
categories: one is to trace all loading histories and the other
find the shakedown limit theoretically without tracing the ent
loading history.

A direct approach for investigating elastoplastic responses
trace all loading histories. For this purpose, experimental, ana
cal, and numerical methods are available@3#. Tracing the entire
loading history allows us to observe the detailed process of de
mations and to find the loading condition below which a struct
behaves in a stable manner. Nonetheless, generally, analy
methods can be applied only to very simple models. Experime

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Au
14, 1998; final revision, Apr. 21, 1999. Associate Technical Editor: K. T. Rame
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Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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and numerical approaches require a number of parametric an
ses to bound the structural responses. Moreover, it is very diffi
to derive a theoretical condition similar to that for theplastic
buckling load@10# or the plastic collapse load@11# from the re-
sults of the parametric analyses.

As a theoretical approach, the classicalshakedown theory~see,
e.g., @1,4#! is well known. With the shakedown theory, we ca
bound the ESD region regardless of loading histories. The cla
cal shakedown theory is extended to the PSD region in sev
papers@12–15#. In these studies, the effect of geometrical nonl
earity is completely neglected. A few papers@5,16# were pub-
lished concerning the shakedown limit taking geometrical non
earity into account. However, these path-independent shaked
theories are not promising when geometrical nonlinearity ha
strong influence on structural responses because the shake
limit is inherently path-dependent in this case.

To overcome this difficulty, Uetani@17# proposed thesteady-
state limit theory for cantilever beam-columns. Under cycli
bending with continuously increasing amplitude in the presenc
a compressive axial force, a beam-column converges to a st
state unless the loading amplitude reaches a certain limit. If
loading amplitude exceeds this limit, the beam-column exhib
the CI. This limit is called thesteady-state limit~SSL!. In the SSL
theory, the variation of a steady state with respect to the load
amplitude is regarded as a continuous path, called thesteady-state
path. And the SSL is found as the first limit point of the stead
state path. With the SSL theory, though under a specified load
history, the shakedown limit can be predicted theoretically eve
strong effects of geometrical nonlinearity exist. Furthermore,
SSL is found very efficiently because only the variation of
steady state is traced and there is no need for tracing the e
loading history including transient response. Note that the SS
a specific type of the shakedown limit defined for an idealiz
cyclic loading program with continuously increasing amplitude

In our earlier work@9#, the SSL theory has been extended to t
truss structure, which is one of the simplest discrete structures
the previous work, however, the discussion was restricted onl
the SSL for the ESD region. The reason is stated as follows. In
previous method, similar to the SSL theory for cantilever bea
columns@17#, a steady state is represented by a set of the equ
rium states at load reversals in order to trace the steady-state
This representation is based on the assumption that strain re
sals occur only at load reversals. Although this assumption ho
in most circumstances in the ESD region, it does not in the P

.
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Type
region. This is because, in the PSD region, not only load rever
but also yielding of the element exhibiting the PSD can ca
strain reversals.

The objective of this paper is to present a method for predic
the SSL of elastoplastic trusses that bounds the PSD and C
gions. In this paper, first, governing equations are shown for e
toplastic trusses. Second, the hypothesis in the previous
proaches is relaxed so that the strain reversals due to yielding
taken into consideration. Third, based on the relaxed hypothe
we derive new incremental relations for the variation of a ste
state with respect to the loading amplitude. In numerical
amples, the validity of the present method is demonstrated
comparing the results of the SSL analysis with those of the
sponse analysis. In the SSL analysis, the SSL is found accor
to the present method. In the response analysis, on the other h
the entire loading history is traced using a conventional numer
method@18,19#. Furthermore, we discuss the effects of both ge
metrical nonlinearity and loading histories on the shakedo
limit.

2 Governing Equations

2.1 Analytical Models. Consider a pin-jointed space truss
with M elements andN nodes. Assume large displacements–sm
strains. In the present truss model, buckling of a single eleme
ruled out, but that of a global type is taken into account. The to
Lagrangian formulation~see, e.g.,@18#! is used to measure
stresses and strains. As illustrated in Fig. 2, compatibility con
tions for an element are given by

«5
L22L0

2

2L0
2 , (1)

L25~x42x1!21~x52x2!21~x62x3!2, (2)

xi5xi
01ui ; i 51, . . . ,6, (3)

where« is the Green-Lagrangian strain,L andL0 are the current
and initial lengths of the element,ui is the nodal displacement
andxi andxi

0 indicate the current and initial positions of the nod
at the two ends. For equilibrium, we require

Fig. 1 Classification of the response in a plane of loading
combinations

Fig. 2 The positions and the nodal displacements at the two
ends of a truss element
582 Õ Vol. 67, SEPTEMBER 2000
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in which f i is the nodal force,A is the cross-sectional area, ands
is the second Piola-Kirchhoff stress. By assembling the equi
rium equation for the element, we obtain the equilibrium equ
tions for the total system.

As a constitutive model, we employ a bilinear kinematic ha
ening rule shown in Fig. 3. LetE, Et , sy , and «p indicate
Young’s modulus, the tangent modulus after yielding, the init
yield stress, and the plastic strain, respectively. Then the su
quent yield stressessyt and syc in tension and compression ar
expressed as

syt5
EEt

E2Et
«p1sy , syc5

EEt

E2Et
«p2sy . (5)

The stress-strain relations are expressed as follows:

s5E~«2«p!, for syc<s<syt , (6)

s5Et«1s̄y , if s5syt , (7)

s5Et«2s̄y , if s5syc , (8)

wheres̄y is defined ass̄y5(12Et /E)sy .

2.2 Loading Conditions. The trusses are subjected to initi
constant loadsl0P̄0 and subsequent quasi-static cyclic loadi
lcP̄c . Here, l and P̄ denote the load factor and the consta
vector with 3N components, respectively. The subscripts 0 anc
indicate the quantities corresponding to the constant loads and
cyclic loading. According to the boundary condition, either t
nodal force or the nodal displacement is specified for every co
ponent of bothP̄0 and P̄c .

The load factorlc varies between the maximum valuelc
I 5c

and the minimum valuelc
II 52c in a cycle, wherec denotes the

amplitude oflc . Variation of lc is defined by a monotonically
increasing parametert, called time or the equilibrium path param
eter. The equilibrium states at whichlc5lc

I and lc5lc
II are

called theG I state and theG II state, respectively. The superscrip
I and II indicate that state variables, such as stresses, strains
displacements, refer toG I andG II . Though the loading conditions
given here are very simple, more complex loading conditions
be treated in the present theory. For example, the absolute va
of lc

I andlc
II can be different.

2.3 Cyclic Responses in a Stress-Strain Plane.For later
formulation, we classify all possible types of cyclic responses i
stress-strain plane. The classification is schematically illustrate
Fig. 4. The superscriptst andc indicate the quantities belonging t
the equilibrium statesG t andGc at which the strain takes its maxi
mum and minimum values in a cycle, respectively. Type E is
ESD response whose stress moves within the rangesyc,s
,syt . If the plastic strain«p satisfies«p50, Type E is a purely
elastic response, and it is an unloading response otherwise.
T is the ESD response whose stress reachessyt , or s t5syt .
Type C is the ESD response wheresc5syc . Type P is the PSD

Fig. 3 A bilinear kinematic hardening rule
Transactions of the ASME
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response. Throughout this paper, the elements exhibiting Type
C, T, and P are called the E-element, the C-element,
T-element, and the P-element, respectively.

According to this classification, stress-strain relations are
mulated for each type of the cyclic response. Let the superscrim
indicate the state variables referring to an arbitrary equilibri
stateGm in a steady state. And let the superscriptb(m) indicate
the quantities for the equilibrium state at which the last unload
occurs beforeGm as shown in Fig. 5. Then we can express t
stresssm in terms of the strains«m, « t, «c, and«b(m) as follows:

Type E:sm5E~«m2«p
m!, (9)

Type T:sm5Et«
m1s̄y , if sm5s t, (10)

sm5E«m2~E2Et!«
t1s̄y , if smÞs t, (11)

Type C:sm5E«m2~E2Et!«
c2s̄y , if smÞsc, (12)

sm5Et«
m2s̄y , if sm5sc, (13)

Type P:sm5Et«
m6s̄y , if sm5syt

m or sm5syc
m , (14)

sm5E«m2~E2Et!«
b~m!6s̄y , if syc

m ,sm,syt
m . (15)

Note that plastic strains are eliminated in obtaining Eqs.~11!,
~12!, and ~15!. Let us show an example of this elimination. Th
stressess t andsm are written as

s t5E~« t2«p
t !, sm5E~«m2«p

m!, (16)

since Hooke’s law equation~6! holds in any equilibrium states
From the definition of Type T,

s t5Et«
t1s̄y . (17)

In an ESD response,«p is constant throughout a cycle and w
have

«p
t 5«p

m . (18)

Eliminating «p
t and«p

m from Eqs.~16!–~18!, we obtain Eq.~11!.

3 Fundamental Concepts
In this section, first, we summarize the fundamental conce

and the hypotheses in the previous method of finding the SSL

Fig. 4 Classification of all possible types of the cyclic
response

Fig. 5 The equilibrium state Gb„m… at which the last loading
occurs before Gm
Journal of Applied Mechanics
s E,
the

or-
t
m

ing
he

e

e

pts
for

the ESD region~@9#!. Then a general consideration is made
strain reversals. Based on this consideration, the hypothese
relaxed and the key concepts are shown for finding the SSL
the PSD region.

3.1 The Steady-State Limit„SSL… Theory for the Elastic
Shakedown „ESD… Region. The fundamental concepts of th
SSL theory are summarized as follows:

1 A steady state is represented by a point in a special sp
This space is called thesteady-state spaceand is schematically
illustrated in Fig. 6.

2 Under an idealized cyclic loading~ICL! program with con-
tinuously increasing amplitude, the sequence of these point
regarded as a continuous path, called the steady-sate path.

3 The SSL is found as the first limit point of the steady-sta
path.

In the ICL program, the loading amplitudec varies continu-
ously with respect to the steady-state path parametert. The load-
ing cycle is repeated as many times as necessary for a structu
converge to a steady state at each level ofc as shown in Fig. 7.
More rigorous definition of the ICL program was given by Ueta
and Araki @9#.

In the previous method, the variation of a steady state w
respect tot was formulated in terms of the state variables at lo
reversals based on the following hypotheses:

(H2*) All the state variables forG I andG II are continuous and
piecewise differentiable functions oft.

(H3*) For all elements, strain reversals occur only atG I or G II .
Note that (H3*) is applied not to the transient response but

the steady-state response after convergence.

3.2 The Steady-State Limit„SSL… Theory for the Plastic
Shakedown„PSD… Region. In the PSD region, as mentioned i
the Introduction, hypothesis (H3* ) dose not hold in many circum
stances. To deal with this difficulty, let us consider why stra
reversals take place in the present truss model. If the rela
between strain« and the equilibrium path parametert is linear in
every element, no strain reversals can occur. On the other h
strain reversals are possible if the«-t relation is nonlinear. Obvi-
ously, this relation is nonlinear in the present model. The sour

Fig. 6 Fundamental concepts of the SSL theory: „a… the equi-
librium state space and „b… the steady-state space

Fig. 7 „a… The ICL program and „b… the loading process at each
amplitude level
SEPTEMBER 2000, Vol. 67 Õ 583
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of this nonlinearity are classified as follows:~1! nonproportional
loading or cyclic loading;~2! material nonlinearity, e.g. yielding
and~3! geometrical nonlinearity, or nonlinear strain-displacem
relations. In this study, the strain reversals due to geometr
nonlinearity are not considered since they are much less likel
occur than those due to material nonlinearity or nonproportio
loading.

Based on the above consideration, (H2* ) and (H3* ) are re-
laxed so that the strain reversals due to yielding are taken
consideration:

(H2** ) All the state variables for the equilibrium states
which strain reversals occur are continuous and pie
wise differentiable functions oft.

(H3** ) For all elements, strain reversals occur only at lo
reversals or at the yielding of P-elements.

Similar to (H3*),(H3** ) is applied not to the transient re
sponse but to the steady-state response.

Based on these relaxed hypotheses, a steady state is repre
by a set of equilibrium states at which yielding or a load rever
occurs. The key difference between the previous and pre
methods is shown in Fig. 8. In this paper, the equilibrium state
representing a steady state is called therepresentative equilibrium
stateor RES. In the RESs,G1 andG2 are defined in such a wa
that they correspond respectively to the equilibrium statesG I and
G II . Once a steady state is represented by a set of the R
similar to the previous method, the steady-state path is traced
step-by-step manner. And the SSL is found as the first limit po
of the steady-state path. Note that, in the SSL theory, we tr
only the variation of a steady state with respect to the load
amplitude and that no equilibrium paths are traced.

4 Formulation

4.1 Incremental Relations for Variation of a Steady State.
Consider a steady state att5th represented by a set ofJ RESs
Gm (m51,2,¯ ,J). When all the state variables are known in t
current steady state att5th , our problem is to find those in the
neighboring steady state att5th115th1Dt. Let the dot indi-
cate differentiation with respect tot. Then, owing to (H2** ), the
state variables att5th11 are expressed with the Taylor serie
expansion as

Um~th11!5Um~th!1U̇m~th!Dt1
1

2
Üm~th!Dt21¯ , (19)

Fm~th11!5Fm~th!1Ḟm~th!Dt1
1

2
F̈m~th!Dt21¯ , (20)

Em~th11!5Em~th!1Ėm~th!Dt1
1

2
Ëm~th!Dt21¯ , (21)

Ep
m~th11!5Ep

m~th!1Ėp
m~th!Dt1

1

2
Ëp

m~th!Dt21¯ , (22)

Sm~th11!5Sm~th!1Ṡm~th!Dt1
1

2
S̈m~th!Dt21¯ , (23)

Fig. 8 Key differences between „a… the previous method and
„b… the present method
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whereF andU are the nodal force vector and the nodal displa
ment vector with 3N components, andE, Ep , andS denote the
strain vector, the plastic strain vector, and the stress vector witM
components. Here, recall thatM and N are the numbers of the
elements and the nodes. To determine the state variables a
neighboring steady state, we must determine the step lengthDt
and compute the derivatives of the state variables. In the follo
ing subsections, the formulation for obtaining these quantitie
shown.

4.2 Rate Forms of Governing Equations. We formulate
the rate forms of the governing equations for the total syste
Differentiating the compatibility conditions~1!–~3! and the equi-
librium condition ~4!, we have the rate forms of these equatio
for an element as

«̇m5
]«m

]ui
m u̇i

m , (24)

ḟ i
m5AL0S ṡm

]«m

]ui
m 1sm

]2«m

]ui
m]uj

m u̇ j
mD . (25)

Throughout this paper, the summation convention is used only
subscriptsi, j, andk that varies from 1 to 6. As shown in Appen
dix A, the rate forms of the stress-strain relations are expresse

ṡm5(
n51

J

Dmn«̇n. (26)

Substituting Eqs.~24! and~26! into Eq. ~25!, we obtain the nodal
force rate-nodal displacement rate relations for an element as

ḟ i
m5(

n51

J

ki j
mnu̇ j

n ,

ki j
mn5AL0(

n51

J

Dmn
]«m

]ui
m

]«n

]uj
n 1AL0dmnsm

]2«m

]ui
m]uj

m , (27)

wheredmn is Kronecker’s delta andki j
mn is the coefficient relating

ḟ i
m to u̇ j

n . By assembling Eq.~27!, we obtain the nodal force
rate-nodal displacement rate relations for the total system

Ḟm5(
n51

J

KmnU̇n, (28)

whereKmn is the coefficient matrix ofU̇n.
Now we haveJ33N equations that relateḞm to U̇m. Substitute

all the components ofl̇c
mP̄c into Eq. ~28! according the boundary

condition. Then the number of unknowns becomesJ3(3N11).
Here, it should be noted thatl̇m (m51,¯ ,J) are regarded as
unknowns as well as theJ33N unknown components of the
nodal force rates and/or the nodal displacement rates. To d
mine all these unknowns, additionalJ equations are needed to
gether with Eq.~28!. The additional equations are given by th
conditions that characterize the RESs. Since the first two RESs
defined as the equilibrium states at load reversals, the condit
for l̇c

1 and l̇c
2 are written as

l̇c
15ċ, l̇c

252ċ. (29)

The remaining RESsGm (m>3) are characterized by the yieldin
of P-elements. As shown in Fig. 9, the equilibrium stateGm is
characterized by one of the following conditions:

sm5sb~m!, sm5sb~m!62sy . (30)

With «p
m5«p

b(m) and Hooke’s law equation~6!, differentiation of
every equation in Eq.~30! yields the same rate relation

«̇m2 «̇b~m!50. (31)
Transactions of the ASME
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Condition~31! is expressed in terms of the nodal displacements
an element as

]«m

]ui
m u̇i

m2
]«b~m!

]ui
b~m! u̇i

b~m!50. (32)

Condition ~32! can be rewritten in terms of the nodal displac
ments for the total system as

LmU̇m1Lb~m!U̇b~m!50, (33)

whereL is the coefficient matrix ofU̇, and0 is the zero vector.
With these equations together with Eq.~28!, the number of the
equations becomes identical to that of the unknowns as show
Table 1. These equations are to be solved by specifying the v
of ċ.

4.3 Termination Conditions for Incremental Steps. In
tracing the steady-state path, an incremental step should be te
nated at the steady state where the types of stress rate-strai
relations change. In addition, the step lengthDt should be small
enough to prevent an excessive accumulation of truncation er
HenceDt is determined as the smallest value among the va
obtained from the following conditions and the specified ma
mum allowable valueDt̄max.

For each E-element,Dt is calculated with the following
conditions:

s t~th11!2syt
t ~th11!50, for E→T, (34)

sc~th11!2syc
c ~th11!50, for E→C. (35)

Here, in the linear approximation,s(th11)'s(th)1ṡ(th)Dt
and other variables are expressed similarly. Note thatṡyt

t (th)
5ṡyt

t (th)50 in E-elements. For all E, T, and C-elements, t
condition for the transition to Type P is written as

s t~th11!2sc~th11!22sy50. (36)

For P-elements, as illustrated in Fig. 10~a!, the conditions for the
transitions from the elastic range to the strain-hardening range
written as

sm~th11!2syt
m ~th11!50, sm~th11!2syc

m ~th11!50.
(37)

The condition for the transition from the straining hardening ran
to the elastic range shown in Fig. 10~b! is given by

Fig. 9 The yielding conditions „a… smÄsb„m…¿2sy and „b… sm

Äsb„m…

Table 1 The numbers of equations and unknowns

Derivatives
Number of
unknowns

Equation
number

Number of
equations

Ḟm, U̇m J33N ~28! J33N

l̇1, l̇2 2 ~29! 2
l̇m J22 ~33! J22

Total J(3N11) total J(3N11)
Journal of Applied Mechanics
of

e-

n in
lue

rmi-
rate

ors.
ues
xi-

e

are

ge

«p
m~th11!2«p

b~m!~th11!50. (38)

4.4 Steady-State Limit „SSL… Condition. Substituting the
derivatives and the step length into Eqs.~19!–~23!, we obtain the
state variables at the neighboring steady state. Repeating t
procedures, we can trace the steady-state path. As shown in
6~b!, the SSL is characterized as the first limit point of the stea
state path with respect to the loading amplitudec. The SSL con-
dition is therefore given as

ċ<0. (39)

For finding the SSL, a procedure similar to the displacement c
trol schemes@18,19# is employed. More details of the prese
method are shown in Appendices B, C, and D.

5 Numerical Examples
In this section, the validity of the hypotheses in the pres

method is discussed. And it is studied how the shakedown li
changes when different types of loading histories are applied
addition, we examine the effect of geometrical nonlinearity on
shakedown limit. For these purposes, we perform the SSL an
sis and a conventional response analysis, in which the entire l
ing history is traced.

5.1 Steady-State Limit „SSL… Analysis. The present
method is applied to the two-bar and ten-bar plane trusses w
ESD boundaries were obtained by Uetani and Araki@19#. Figure
11 shows the initial shapes, the boundary conditions, and the l

Fig. 10 „a… The transition from the elastic range to the strain
hardening range and „b… the transition from the straining hard-
ening range to the elastic range

Fig. 11 „a… The two-bar truss and „b… the ten-bar plane truss
SEPTEMBER 2000, Vol. 67 Õ 585
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ing conditions of the trusses. When the previous method was
plied directly to these trusses, it failed to find the SSL for the P
region.

The numerical data for these trusses were given as follows.
cross-sectional areas of the two-bar truss wereA(1)51 cm2 and
A(2)52 cm2. Those of the ten-bar truss were as follows:A(1)

5A(4)5A(5)511 cm2, A(2)5A(3)51.1 cm2, A(6)5A(9)5A(10)

510 cm2, and A(7)5A(8)51 cm2. For both trusses, materia
properties were E51.9613102 GPa, Et50.01E, sy

52.9423102 MPa. When only initial constant loads were a
plied, buckling loads in the sense of Hill@10# were lb50.7477
and 40.38 for the two-bar and ten-bar trusses, respectiv
Throughout the SSL analysis, higher-order terms were emplo
up to the second order~see Appendix B!. The values of the maxi-
mum allowable step lengthDt̄max were Dt̄max50.05 and 0.2 for
the two-bar and ten-bar trusses, respectively.

Figures 12~a! and~b! depict the results of the SSL analysis.
the SSL analysis, the normalized load factorl0 /lb for initial
constant loads were changed parametrically between 0 and 1
the increments of 0.005 and 0.01 for the two-bar and ten-
trusses. These figures illustrate the value of the loading ampli
cssl at the SSL predicted for eachl0 /lb .

5.2 Response Analysis. Entire loading history was trace
under two typical cyclic loading programs shown in Fig. 13~@7#!.
The STIDAC is a forced displacement program where the am
tude c of the forced displacement is increased every half cy

Fig. 12 The SSL for „a… the two-bar truss and „b… the ten-bar
truss

Fig. 13 The cyclic forced displacement programs: „a… STIDAC
and „b… STIDAD
586 Õ Vol. 67, SEPTEMBER 2000
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with an incrementDc̄ from zero to a specified valuec̄max, and
then c is fixed at c̄max in the following cycles. In the STIDAD
program,c is fixed at a constant valuec̄ throughout the loading
cycles. Note that the loading history of the STIDAC progra
becomes closer to that of the ICL program asDc is made smaller.
The details of the solution method for the response analysis
the criteria for convergence are exactly the same as those sh
by Uetani and Araki@9#.

First, we performed the response analysis for everyl0 /lb un-
der the loading conditions c̄max5(160.001)cssl, Dc̄
50.001cssl, and c̄5(160.001)cssl. Under the STIDAC pro-
gram, good agreement was observed between the results o
SSL and the response analyses; convergence was observed
cases whenc̄max,cssl; and divergence was obtained ifc̄max
.cssl. From these results, it may be stated that the hypothese
the proposed method are verified. On the other hand, the resu
the response analysis under the STIDAD program did not alw
coincide with the results of the SSL analysis. In the ten-bar tru
convergence was observed in spite of the conditionc̄.cssl.
These results clearly indicate that the shakedown limit for
ten-bar truss is path-dependent.

To study how the shakedown limit changes when differe
types of loading histories are applied, we carried out a parame
analysis in which not onlyl0 but alsoc̄ in the STIDAD program
are changed. The load factorl0 of the constant load was change
in the same manner as in the SSL analysis. The normalized
plitude c̄/H2(31023) was changed from 0 to 25 with the incre
ment of 0.25. Accordingly, we performed the response analy
for 1003100 different combinations of (l0 ,c̄). The result of the
parametric analysis is illustrated in Fig. 14. The darker and ligh
gray circles indicate the convergence to the PSD and ESD, res
tively. It is worth noting in Fig. 14 that the SSL gives the low
bound of the shakedown limit obtained under the STIDA
program.

One might think that the shakedown limit obtained by the co
ventional shakedown theory, where perfect plasticity and sm
displacements are assumed, is close to or conservative to the
in Fig. 12. Nevertheless these approximations, especially the
sumption of small displacements, can lead to a significant er
To show an example of this error we performed the respo

Fig. 14 The SSL and the results of the parametric response
analysis
Transactions of the ASME
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analysis based on the assumptions of both large and small
placements. In the assumption of small displacements we use
conventional linear strain-displacement relation. On the ot
hand, the nonlinear Green-Lagrangian strain shown in Eq.~1! was
employed in the assumption of large displacements. The resp
analysis was conducted forc̄595, 105, and 130 percent ofcssl
underl0 /lb50.37. Figure 15 shows the results of the respo
analysis. Noting that they scales are different in Figs. 15~a! and
~b!, we can make the following two observations:~1! The error
became significant ifc̄.cssl while it was very small otherwise
~2! The assumption of small displacements did not give a con
vative shakedown limit. Similar results were reported for cylind
cal shells by Maier et al.@8#.

6 Conclusions
For elastoplastic trusses subjected to quasi-static cyclic loa

in the presence of constant loads, a new method has been
sented for finding the SSL that bounds the PSD region and th
region. Although strain reversals were assumed to occur onl
load reversals in the previous approaches, this assumption ca
invalid in many circumstances in the PSD region. In the pres
theory, therefore, the hypothesis on strain reversals has bee
laxed so that the strain reversals due to yielding can be taken
account. Based on the relaxed hypothesis, we have derived
incremental relations for the variation of a steady state with
spect to the loading amplitude. With these incremental relatio
similar to the previous approaches, the steady-state path is tr
in a step-by-step manner and the SSL is found as the first l
point of the steady-state path.

Through numerical examples, the following findings have be
made for the two-bar and ten-bar trusses:

1 The results of the SSL analysis agreed very well with th
of a conventional response analysis when the loading progr
employed in both analyses were close enough. This good ag
ment shows the validity of the present method.

2 The SSL, defined for the ICL program with continuous
increasing amplitude, was conservative or close to the shaked
limit obtained under two typical cyclic loading programs.

3 With the present method, the SSL can be predicted eve
strong effects of geometrical nonlinearity exist. The errors due
geometrical nonlinearity were significant if the loading amplitu
was larger than the SSL while they were trivial otherwise.
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Fig. 15 The relations between U5 and the number of load re-
versals for the ten-bar truss under „a… c̄Ëcssl and „b… c̄Ìcssl
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Appendix A

Stress Rate-Strain Rate Relations. Consider the stress rate
strain rate relations for the variation of a steady state. Suppose
the following conditions are known during the incremental st
defined byth<t<th11 :

~C1! The numberJ of the RESs.
~C2! For every element, the RESs corresponding to the equ

rium statesG t and Gc, where strain takes its maximum
and minimum values in a steady cycle.

~C3! For every P-element, the RESs corresponding to the e
librium statesGb(m) (m51,2, . . . ,J), where the last un-
loading occurs beforeGm.

Then, differentiating Eqs.~9!–~12! with respect tot, we obtain
the stress rate-strain rate relations for the E, T, and C-eleme
The rate relations are expressed as

ṡm5Dmm«̇m1Dmt«̇ t1Dmc«̇c, (40)

where Dmm, Dmt, and Dmc are the coefficients that are chose
according to Table 2. For the P-elements, differentiation of E
~14!–~15! leads to

ṡm5Dmm«̇m1Dmb«̇b~m!, (41)

in which Dmm and Dmb are the coefficients that are selected a
cording to Table 3. With the help of the conditions~C1!–~C3!, we
can express the rate forms of the stress-strain relations in a ge
form

ṡm5(
n51

J

Dmn«̇n, (42)

where Dmn is the coefficient of«̇n. Note that, for all T and
C-elements, we should choose a set of the coefficients that
consistent with the signs of the resulting strain rates as show
Table 2. For this purpose, we employ the trial-and-error proced
whose details are shown in our earlier work@9#.

Appendix B

Higher-Order Formulation. Though only the formulation
with the first-order derivatives is shown in Section 4 for clar
and simplicity of the presentation, it is desirable to use high
order derivatives for more accurate approximations. For this p
pose, a formulation is presented for the SSL analysis with high
order terms. Though we derive here the derivatives up to
second order, the derivatives higher than the second order ca
obtained similarly. Differentiation of the rate forms of governin

Table 2 Stress rate-strain rate relations for an element exhib-
iting elastic shakedown „ESD…

E T C

«̇ t>0 «̇ t,0 «̇c<0 «̇c.0

sm5s t smÞs t sm5sc smÞsc

Dmm E Et E E Et E E
Dmt 0 0 Et2E 0 0 0 0
Dmc 0 0 0 0 0 Et2E 0

Table 3 Stress rate-strain rate relations for an element exhib-
iting plastic shakedown „PSD…

sm5syt
m sm5syc

m syc
m ,sm,syt

m

Dmm Et Et E
Dmb 0 0 Et2E
SEPTEMBER 2000, Vol. 67 Õ 587
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Equations~24!–~32! with respect to the steady-state path para
etert yields the second-order perturbation equations as follow

«̈m5
]«m

]ui
m üi

m1
]2«m

]ui
m]uj

m u̇i
mu̇ j

m . (43)

f̈ i
m5AL0S s̈m

]«m

]ui
m 1sm

]2«m

]ui
m]uj

m ü j
m12ṡm

]2«m

]ui
m]uj

m u̇ j
mD . (44)

s̈m5(
n51

J

Dmn«̈n. (45)

Note thatḊmm50 because a bilinear constitutive relation is a
sumed. Differentiating Eq.~27!, we obtain the second-order pe
turbation equations for each element:

f̈ i
m5(

n51

J

ki j
mnü j

n1 f̂ i
m , (46)

where the coefficientki j
mn is identical to that in Eq.~28! and the

caret indicates the quantities expressed in terms of the first-o
derivatives as

f̂ i
m52AL0ṡm

]2«m

]ui
m]uj

m u̇ j
m1AL0

]«m

]ui
m (

n51

J

Dnn
]2«n

]uj
n]uk

n u̇ j
nu̇k

n .

(47)

Assembling the perturbation equations for an element, we h
the second-order perturbation equations for the total system

F̈m5KmnÜn1F̂m, (48)

where the coefficient matrixKmn is identical to that in Eq.~28!.
Differentiation of Eq.~29! and ~32! leads to

l̈c
12c̈50, l̈c

21c̈50, (49)

]«m

]ui
m üi

m2
]«b~m!

]ui
b~m! üi

b~m!1ûmb50, ~m>3!, (50)

where

ûmb5
]2«m

]ui
m]uj

m u̇i
mu̇ j

m2
]2«b~m!

]ui
b~m!]uj

b~m! u̇i
b~m!u̇ j

b~m! . (51)

Equation~51! can be expressed in terms of nodal displaceme
for the total system as

LmÜm1Lb~m!Üb~m!1Ûmb50. (52)

By specifying the value ofc̈, we can solveJ3(3N11) simulta-
neous linear Eqs.~48!–~49! and ~52!. Note that, as stated in ou
earlier paper@9#, the conditions for the transitions T→E and C→E
should be considered in determining the step length when
employ the terms higher than or equal to the second order.

Appendix C

Change of the Number of Yielding Points. When the num-
ber of yielding points changes, conditions~C1!–~C3! in Appendix
A may change. Let us consider a method for determining
change of these conditions. First, we consider when the numb
yielding points changes. Suppose that a strain reversal occu
Gm in an element. IfGm satisfies Eq.~37!, the number of yielding
points increases. On the other hand, the number of yielding po
decrease ifGm satisfies Eq.~38!.

Second, when the number of yielding points increases in
element att5th as illustrated in Fig. 16~a!, the strain reversal a
the new yielding point should be examined in every elemen
illustrated in Fig. 16~b!. We examine the strain reversal by usin
«82 and«81. Here the prime with superscripts2 and1 indicate
partial differentiation with respect tot before and afterGy in the
588 Õ Vol. 67, SEPTEMBER 2000
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transient response when the loading amplitude is slightly chan
as shown in Fig. 17~a!. As depicted in Fig. 17~b!, the strain re-
versal is judged to occur if«82«81,0. Otherwise, strain reversa
is judged not to occur. Note that, in the present method,«81 and
«82 are calculated not for tracing the equilibrium path in t
transient response but for examining the strain reversals.

To summarize, conditions~C1!–~C3! are changed when one o
the following two condition is satisfied:~CE1! the number of
yielding points increases and the new yielding point causes st
reversals at least in one element;~CE2! the number of yielding
points decreases. For example, in Fig. 16~b!, the conditions are
written asJ52 andG t5G1 for t,th . In Case 1, the strain re
versal occurs only at the load reversal fort>th and the condi-
tions J52 andG t5G1 are kept. In contrast, in Case 2, the stra
reversal takes place atGy. In this case, the conditions are chang
to J53 andG t5G3.

Appendix D

A Basic Algorithm for the Steady-State Limit „SSL… Analy-
sis.

1 Obtain the equilibrium state under initial constant loads.
2 IF ~CE1! or ~CE2! is satisfied, change conditions~C1!–~C3!.
3 Calculate the derivatives with respect tot.
4 IF the assumed and resulting signs of strain rates are N

consistent, change the stress rate-strain rate relations and
TO Step 3.

5 IF the SSL condition is satisfied, END.
6 Determine the incremental stepDt.
7 Update the variables.
8 IF one of Eqs.~34–37! is satisfied, change the stress rat

strain rate relations. GO TO Step 2.

Fig. 16 An example of a new yielding point: „a… the transition
in an element where the number of yielding point increases and
„b… the transition in another element

Fig. 17 „a… The change of the load factor and „b… the examina-
tion of strain reversals
Transactions of the ASME
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Local Buckling of a Circular
Interface Delamination Between a
Layer and a Substrate With Finite
Thickness
An analytical study investigating the local buckling response of a circular delamina
along the interface of an elastic layer and a dissimilar substrate with finite thicknes
presented. The solution method utilizes the stability equations of linear theory of elas
under axisymmetry conditions. In-plane loading and the presence of mixed boun
conditions on the bond-plane result in a homogeneous system of coupled singular in
equations of the second kind with Cauchy-type kernels. Numerical solution of these
gral equations leads to the determination of local buckling stress and its sensitivi
geometric parameters and material properties.@S0021-8936~00!01503-8#
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1 Introduction

Presence of a delamination in a layered material system suc
a thin film over a substrate can reduce the compressive streng
a level that permits premature failure in the form of local buc
ling. In the experimental investigation conducted by Argon et
@1# almost all of the delaminations between the thin film~layer!
and the substrate had circular boundaries. Also, interface del
nation was only observed with thicker films rather than with ve
thin films. For sufficiently large compressive stresses, the dela
nated region buckles out; thus, resulting in blisters. Numer
analytical and or numerical models address the local buckling
delamination in homogeneous media. As discussed by Mad
@2# these models were based primarily on structural mecha
theories, such as those for plates and beams, and cannot ad
small ratio of delamination length to thickness, the presence
mixed boundary conditions along the delamination front, and
presence of oscillating stress singularity, near the delamina
front, rising from the moduli mismatch between the film and su
strate. Madenci and Westmann@3,4# and Madenci@5# addressed
the local delamination buckling and growth for homogeneous m
dia within the realm of theory of elasticity in order to impose t
appropriate boundary conditions along the delamination fro
Only Wang and Takao@6# and Madenci et al.@7# have addressed
local buckling of an interface delamination between dissim
elastic materials.

By considering the stability equations of the theory of elastic
Wang and Takao@6# and Madenci et al.@7# studied the local
buckling response of an interface delamination between a
layer and a half-space with dissimilar material properties. Un
plane-strain assumptions, Wang and Takao provided the buck
stress and the corresponding mode shape for a through-the-w
delamination when both the layer and the half-space are subje
to uniform in-plane compressive strain. Madenci et al. provid
the stress intensity factors for a circular delamination with a sli
initial imperfection when only the delaminated layer bonded t
half-space is subjected to in-plane compressive stress. In t

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ap
21, 1999; final revision, Nov. 7, 1999. Associate Technical Editor: R. C. Bens
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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studies, the resulting dual integral equations were reduced
pair of coupled singular integral equations of the second kind w
a Cauchy-type singularity.

Based on the approach described in these previous anal
this study addresses the local buckling of a circular interface
amination between a layer and a substrate with finite thickn
under uniform in-plane compressive strain. The geometry
loading of a partially homogeneous layered medium with a d
amination are described in Section 2; the solution method is
sented in Section 3; and the numerical method used in the solu
of the integral equations is presented in Section 4, along with
numerical results.

2 Problem Statement
The geometry of the layered homogeneous medium with a

amination is described in Fig. 1. A cylindrical coordinate syste
(r ,u,z) coincides with the center of the circular delamination
the interface plane. The radius of the circular delamination ia
51. The thicknesses of the layer and the substrate are denote
hl andhs , respectively. The layer and the substrate materials
isotropic, elastic, and homogeneous, with dissimilar shear mod
m i , and Poisson’s ratios,n i . The subscripted~or superscripted! i
refers to the layer and the substrate ofl and s, respectively. In-
plane compressive stresses in the layer and the substrate,s0

( l ) and
s0

(s) , respectively, result in a uniform compressive strain,«0 ,
which can be expressed as

s0
~ l !5

2m l~12n l !

122n l
«0 and s0

~s!5
ms~122n l !

m l~122ns!

~12ns!

~12n l !
s0

~ l ! .

(1)

As given by Flugge@8#, the displacement equilibrium equation
in cylindrical coordinates under axisymmetric geometric and lo
ing conditions for an elastic medium with spatially constant init
stress,s0

( i ) , are

r.
on.
essor
on,
li-Fig. 1 A circular delamination along the interface of an elastic
layer and a dissimilar substrate
© 2000 by ASME Transactions of the ASME



2~12n i !

122n i
F1

r
~rur

~ i !! ,r1uz,z
~ i ! G

,r

2~uz,r
~ i !2ur ,z

~ i ! ! ,z2
s0

~ i !

m i
F1

r
~rur

~ i !! ,r G
,r

50

2~12n i !

122n i
F1

r
~rur

~ i !! ,r1uz,z
~ i ! G

,z

1
1

r
@r ~uz,r

~ i !2ur ,z
~ i ! !# ,r2

s0
~ i !

m i

1

r
~ruz,r

~ i ! ! ,r506 i 5 l ,s (2)

in which ur
( i ) anduz

( i ) are the components of the displacement field.
The boundary conditions associated with the traction-free surfaces of the elastic layer (z5hl) and the substrate (z52hs) are

expressed by

2m i

122n i
F ~12n i !uz,z

~ i !1n i

1

r
~rur

~ i !! ,r G50

m i~ur ,z
~ i !1uz,r

~ i ! !50
J i 5 l ,s rP@0,̀ !. (3)

Along the bond line,z50, the continuity of displacement and traction components requires that

ui
~ l !5ui

~s! with i 5r ,z rP~a,`! (4a)

and

2m l

122n l
F ~12n l !uz,z

~ l !1n l

1

r
~rur

~ l !! ,r G5
2ms

122ns
F ~12ns!uz,z

~s!1ns

1

r
~rur

~s!! ,r G
m l~ur ,z

~ l !1uz,r
~ l ! !5ms~ur ,z

~s!1uz,r
~s!!

J r P~a,`!. (4b)
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Also, traction-free delamination surfaces on thez50 plane re-
quire that

2m i

122n i
F ~12n i !uz,z

~ i !1n i

1

r
~rur

~ i !! ,r G50

m i~ur ,z
~ i !1uz,r

~ i ! !50
J i 5 l ,s rP@0,a!.

(5)

The solution to this instability problem involves the search
compressive uniform strain,«0 , so that nontrivial solutions of the
equilibrium Eqs.~2! exist subject to these boundary conditions

3 Solution Method
Utilizing the integral representation of the displacement fi

suggested by Harding and Sneddon@9#, ur
( i )(r ,z) anduz

( i )(r ,z), in
the form

ur
~ i !~r ,z!5E

0

`

Ai~z,j!J1~r j!dj

uz
~ i !~r ,z!5E

0

`

Bi~z,j!J0~r j!dj6 i 5 l ,s (6)

permits the reduction of the displacement equilibrium equati
~Eq. ~2!! to a pair of ordinary differential equations forAi(z,j)
andBi(z,j),

Ai92
2~12n i !

122n i
j2Ai2

1

122n i
jBi81

s0
~ i !

m i
j2Ai50

2~12n i !

122n i
Bi92j2Bi1

1

122n i
jAi81

s0
~ i !

m i
j2Bi50 6 i 5 l ,s (7)

in which Ai(z,j) and Bi(z,j) are unknown auxiliary functions
and the prime denotes differentiation with respect to the varia
z. The general solution to this system of equations can be rea
written as

Ai~z,j!5C1
~ i !e2t ijz1C2

~ i !et ijz1b i@C4
~ i !eb ijz2C3

~ i !eb ijz#
(8)

Bi~z,j!5t i@C1
~ i !e2t ijz2C2

~ i !et ijz#1C3
~ i !eb ijz1C4

~ i !e2b ijz
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where Cj
( i )(j) ( j 51, . . . ,4) are theunknown coefficients to be

determined from the boundary conditions andt i and b i are de-
fined as

t i5A12
~122n i !s0

~ i !

2m i~12n i !
and b i5A12

s0
~ i !

m i
. (9)

Enforcing the traction-free conditions~Eq. ~3!! on the surfacesz
5hl andz52hs and the continuity of traction components~Eqs.
~4!–~5!! along the interface planez50 permits the determination
of C1

( l ) , C2
( l ) , and Cj

(s) ( j 51,4) in terms ofC3
( l ) and C4

( l ) . As
suggested by Arin and Erdogan@10#, expressing these remainin
unknowns in terms of two unknown functions,f 1(r ) and f 2(r ), in
the form

f 1~r !H~a2r !5@uz
~s!~r ,0!2uz

~ l !~r ,0!# ,r (10)

f 2~r !H~a2r !5
1

r
$r @uz

~s!~r ,0!2uz
~ l !~r ,0!#% ,r

ensures the continuity of displacement components along the
terface. As described by Arin and Erdogan, the equations resu
from interpretation of the traction-free conditions on the delam
nation surfaces can be cast into a homogeneous system of sin
integral equations of the form

Af ~r !1
1

p E
2a

a

Bf~ t !
dt

t2r
1E

2a

a

k~r ,t !f~ t !dt50, ur u,a

(11)

with constraints

E
2a

a

f 1~ t !dt50 and E
2a

a

utu f 2~ t !dt50. (12)

The vectorf(r ) contains the unknown functionsf 1(r ) and f 2(r ).
Known matricesA, B, andk are given as

A5F 0 ā1

ā2 0 G , B5F1 0

0 1G , k~r ,t !5Fk11~r ,t ! k12~r ,t !

k21~r ,t ! k22~r ,t !
G

(13)

where the elements ofk are expressed as
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1

2
utu E

0

`

@ b̄1C12~j!2ā1#J0~r j!J0~ tj!jdj

(14)

k21~r ,t !5
1

2
utu E

0

`

@ b̄2C21~j!2ā2#J1~r j!J1~ tj!jdj

k22~r ,t !52
1

p

m2~r ,t !21

t2r
1

1

2
utu E

0

`

@ b̄2C22~j!21#

3J1~r j!J0~ tj!jdj.

The constantsāi and b̄i ( i 51,2) and the explicit expressions fo
Ci j (j) ( i , j 51,2) are given in Appendix A. The functionsmi ( i
51,2) are related to the complete elliptic integrals,K andE, of the
first and second kind, respectively, as

m1~r ,t !5H t22r 2

urt u
KS t

r D1UrtUES t

r D , utu,ur u

ES r

t D , utu.ur u
(15)

and

m2~r ,t !5H UrtUES t

r D , utu,ur u

t2

r 2 ES r

t D2
t22r 2

r 2 KS r

t D , utu.ur u.
(16)

The dominant part of the system in Eq.~11! is decoupled as

g1
1

p E
2a

a

Lg~ t !
dt

t2r
1E

2a

a

K ~r ,t !g~ t !dt50 (17)

with the constraint conditions

E
2a

a

C~ t !g~ t !dt50 (18)
a
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in which g5R21f, L5R21DR, K5R21A21kR, andC(t) is de-
fined by

C~ t !5F1 0

0 utuGR.

The modal matrix ofD5A21B is denoted byR,

R5F Aā1 Aā1

2 iAā2 iAā2
G (19)

The elements of the diagonal matrix,L, are the eigenvalues of th
matrix D, i.e., L115 i /Aā1ā2 andL2252 i /Aā1ā2 with i 5A21.

Adopting the procedure by Muskhelishvilli@11#, the fundamen-
tal solutions to the dominant part of this system of equations~Eq.
~17!! are of the form

wk~ t !5~12t !ak~11t !bk, utu,1

in which

ak5
1
22 i ~21!k« and bk5

1
21 i ~21!k« (20)

~with k51,2! where

«5
1

2p
log

uAā1ā211u

uAā1ā221u
.

As suggested by Erdogan and Gupta@12#, the solution tog is
constructed in terms of an auxiliary function,fk(t), in the form

gk5
fk~ t !

wk~ t !
, with k51,2. (21)

This solution form ensures the proper behavior ofgk(t) at the end
points. The unknown auxiliary function,fk(t), is regular on the
interval tP@21,1#.

The complexity of the kernels in Eq.~14! requires that the
singular integral equation be solved numerically. The proced
involves the reduction of the integral equation and the constra
to a system of algebraic equations using the collocation techn
introduced by Miller and Keer@13# and later extended by Kabi
et al. @14#. In this technique, the unknown function,fk(t), is ap-
proximated by quadratic Lagrange interpolation polynomials. A
result of this discretization. Equations~11!–~12! can be written as
1

~12xj !
a1~11xj !

b1 (
m51

3

Bmf I 1m
~1! 1 (

i 51

2N11
L11

p
wi

~1!~xj !f i
~1!1 (

i 51

2N11

K11~xj ,t i !n i
~1!f i

~1!1K12~xj ,t i !n i
~2!f i

~2!50

1

~12xj !
a2~11xj !

b2 (
m51

3

Bmf I 1m
~2! 1 (

i 51

2N11
L22

p
wi

~2!~xj !f i
~2!1 (

i 51

2N11

K21~xj ,t i !n i
~1!f i

~1!1K22~xj ,t i !n i
~2!f i

~2!506 j 51,2N (22)
e

e
in-

of
for
(
i 51

2N11

n i
~1!f i

~1!1 (
i 51

2N11

n i
~2!f i

~2!50

(23)

(
i 51

2N11

ut i u~n i
~1!f i

~1!1n i
~2!f i

~2!!50

in which I 5 j 21 or j 22 for odd and even values ofj, respec-
tively, andN is the number of integration intervals. The singul
weight functions,wi(xj ) and n i , and the Lagrange coefficients
Bm , are given by Miller and Keer@13#.
r
.

4 Numerical Results
In matrix form, Eqs.~22! and ~23! can be written as

@W~1! W~2!#HF~1!

F~2!J 5 H0
0J (24)

whereW(1) and W(2) are the complex coefficient matrix of siz
(2N1232N12) andF (1) andF (2) are the vector of unknown
auxiliary functions,f i

(1) andf i
(2) , respectively, evaluated at th

collocation points. The components of the coefficient matrix
volve the computation of infinite integrals appearing in Eq.~14!.
The infinite integrals are evaluated by using the modified form
the Filon’s numerical integration scheme in order to account
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the oscillations arising from the Bessel functions. This integrat
scheme is outlined in Appendix B. A nontrivial solution of th
homogeneous and coupled system of singular integral equatio
achieved by searching for values of buckling strain,«0 , which
causes the magnitude of the smallest complex eigenvalue o
coefficient matrix to vanish. This is equivalent to the determin
tion of a zero eigenvalue for which the determinant of the coe
cient matrix becomes zero. The search procedure for finding
local fundamental buckling strain or stress,scr

( l ) involves a trial
and error procedure. Under a specific geometry and material p
erty configuration, the magnitude of smallest eigenvalue of
coefficient matrix is computed and plotted for several trial bu
ling stresses,s0

( l ) . When a change in sign of the slope is observ
for the estimates of the trial buckling stresses, an approxim
value of the buckling stress is obtained by interpolation. Furt
trials are conducted around this approximation to refine the va
of the buckling stress. This search procedure is illustrated in
2 for various number of integration intervals,N521, 25, 31, 35
and 41 whenhl /a50.15, hs /a50.45, n l50.3, ns50.2 and
ms /m l55. As shown in Fig. 2, convergence is achieved for t
magnitudes of smallest eigenvalues as a function of trial lo
s0

( l )/m l , with increasingN and that sufficient accuracy is obtaine
with N521 which is employed throughout this study.

The validity of the present analysis is established by consid
ing a circular delamination in a homogeneous and isotropic p
under in-plane compressive stresses studied by Madenci
Westmann@3#. The geometric configuration and material prope
ties are defined byhl /hs51, n l /ns51 andm l /ms51. The varia-
tion of the buckling stress as a function of layer thickness
delamination length ratio is presented in Fig. 3. The previous
lution to this problem was obtained by solving for the coupl
system of Fredholm integral equations of the second kind w
taking advantage of the symmetry condition with respect to
mid-plane. In the present analysis, slight differences in sh
moduli between the layer and the substrate are introduced
ms /m l51.01 andms /m l50.99 in order to avoid the breakdown o
the present solution method appropriate only for dissimilar ma
rials. The results obtained for both of these ratios coincide w
others because of the presence of symmetry. With these ratios
layer and the substrate exchange places. As shown in this fig
the present analysis results are in acceptable agreement with
of Madenci and Westmann@3#. These results are bounded by th
results of the buckling analysis for a clamped and for a sim
supported circular plate. As shown in Fig. 3, the plate buckl
analysis sets the upper and lower bounds. As expected, the i

Fig. 2 Search procedure for the buckling stress
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ence of structural approximation on the buckling stress is sign
cant for increasing delamination thickness to length ratio. In
case of a layer thickness to delamination length ratio (hl /a) of
0.2, the normalized buckling stress,scr

( l )/m l based on the structura
buckling analysis with clamped boundary condition is about 0.
Although still high, this value reduces to 0.08 with the prese
analysis.

After establishing the validity of the present analysis, the infl
ence of shear modulus ratio, (ms /m l) and layer thickness to
delamination length ratio (hl /a) on the buckling stress is exam
ined for hs /a50.45, n l50.3 andns50.2. Buckling stresses ar
shown in Fig. 4 as a function of layer thickness to delaminat
length ratio for various shear modulus ratios. It is apparent that
normalized buckling stress,scr

( l )/m l , increases as the layer thick
ness to delamination length ratio, (hl /a) increases. However, the
effect of shear modulus ratio on the buckling stress becomes
significant for increasing layer thickness to delamination len
ratio, (hl /a) as shown in Fig. 5. It is worth mentioning that th

Fig. 3 Effect of delamination length to thickness ratio on
buckling stress—similar materials. „Information contained in
this figure came from Madenci and Westmann †3‡ and Timo-
shenko and Gere †16‡.…

Fig. 4 Effect of delamination length to thickness ratio on
buckling stress—dissimilar materials
SEPTEMBER 2000, Vol. 67 Õ 593
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results concerning layer thickness to delamination length ra
(hl /a) smaller than 0.08 is not presented in Figs. 4 and 5 beca
of the uncertainty associated with the numerical convergence

The present analysis provides the solution only to the buck
stress and not the stress field; therefore, the growth of delam
tion cannot be discussed without a fracture parameter such a
energy release rate. However, as introduced by Madenci@2#, an
initial imperfection of the delamination can be introduced to al
the nature of the stability problem so that the fracture parame
can be obtained. Also, the buckling stress obtained from
present analysis cannot be compared with the previous solu
such as those given by Evans and Hutchinson@15# based on the
plate theory because the previous solutions could not include
effect of the oscillatory nature of the stress field and the mix
boundary conditions along the delamination front.

5 Conclusions
By solving for the stability equations of linear theory of ela

ticity, this study investigates the local buckling response of a
cular delamination between an elastic layer and a substrate
dissimilar material properties. This analysis reveals the sensiti
of the buckling stress to the geometric parameters and mat
properties. Such knowledge may be useful in controlling the
fluence of residual stresses arising from the fabrication proc
involving deposition of thin films. Also, this study provides th
bench-mark solutions for related problems addressed by using
proximate solution methods.

Appendix A
In Eq. ~13!, the constants are defined as

ā15

lim
j→`

C12~j!

lim
j→`

C11~j!
; ā25

lim
j→`

C21~j!

lim
j→`

C22~j!
;

b̄15
1

lim
j→`

C11~j!
; b̄25

1

lim
j→`

C22~j!

where

C11~j!5
V21~j!

D~j!
; C12~j!5

V11~j!

D~j!
;

Fig. 5 Effect of modulus ratio on buckling stress—dissimilar
materials
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C21~j!5
V22~j!

D~j!
; C22~j!5

V12~j!

D~j!

with

V11~j!52t11
m1t1

m2
1

~122Q1t1!

R1
~4P12b12a12d11c1!

1
m1t1

m2t2

~2112Q2t2!

R2
~4P22b22a22d21c2!

V12~j!5
~122Q1t1!

R1
~2b11a11d11c1!

1
m1t1Q1

m2t2Q2

~2112Q2t2!

R2
~2b21a21d21c2!

V21~j!5
2P12b1

R1
~2b12a11d12c1!

1
m1t1

m2t2

b222P2

R2
~2b22a21d22c2!

V22~j!512
m1t1Q1

m2t2Q2
1

2P12b1

R1
~4Q12b11a12d12c1!

1
m1t1Q1

m2t2Q2

b222P2

R2
~4Q22b21a22d22c2!

and

D~j!5V11~j!V22~j!2V12~j!V21~j!

in which

a15~P12Q1!e2~b l1t l !jhl; a25~P22Q2!e~bs1ts!jhs

b15~P11Q1!e2~b l2t l !jhl; b25~P21Q2!e~bs2ts!jhs

c15~Q12P1!e~b l1t l !jhl; c25~Q22P2!e2~bs1ts!jhs

d15~P11Q1!e2~2b l1t l !jhl; d25~P21Q2!e~2bs1ts!jhs

P15
b l

11b l
2 ; P25

bs

11bs
2

Q15
11b l

2

4t l
; Q25

11bs
2

4ts

R1528P1Q122b1d122c1a112Q1~b11d11a12c1!

12P1~d11c11b12a1!

R2528P2Q222b2d222c2a212Q2~b21d21a22c2!

12P2~d21c21b22a2!

t l5A12
~122n l !s0

~ l !

2~12n l !m l
; ts5A12

~122ns!s0
~s!

2~12ns!ms

b l5A12
s0

~ l !

m l
; bs5A12

s0
~s!

ms

s0
~s!5

ms~12n l !

m l~12ns!
s0

~ l ! .

Appendix B
The approximate evaluation of the integral of the type

I ~r ,t;a,b!5E
a

b

f ~x!Jp~rx !Jq~ tx!dx (B1)
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in which Jp(rx) andJq(tx) are Bessel’s functions of the first kin
with p,q50,1 andf (x) being smooth in the interval@a,b# can be
achieved by

I ~r ,t !5 (
j 51,3,5

N21

I j~r ,t;xj 21 ,xj 11! (B2)

in which N is the number of integration points in the interv
@a,b# leading to equal integration intervals of (xj 112xj 21)5(b
2a)/N and I j is defined as

I j~r ,t;xj 21 ,xj 11!5E
xj 21

xj 11

f ~x!Jp~rx !Jq~ tx!dx. (B3)

Over the subinterval@xj 21 ,xj 11#, this integral can be approxi
mated as

I j~r ,t;xj 21 ,xj 11!5wj 21f ~xj 21!1wj f ~xj !1wj 11f ~xj 11!
(B4)

in which wj 21 ,wj ,wj 11 are the integration weights. They ar
established by assuming a quadratic variation of the product o
Bessel’s functions of the first kindJp(rx)Jq(tx) in the interval
@xj 21 ,xj 11# such that

E
xj 21

xj 11

xiJp~rx !Jq~ tx!dx5xj 21
i wj 211xj

i wj1xj 11
i wj 115Ri

with i 50,1,2. (B5)

In matrix form, these equations are rewritten as

F 1 1 1

xj 21 xj xj 11

xj 21
2 xj

2 xj 11
2

G H wj 21

wj

wj 11

J 5H R0

R1

R2

J (B6)
a

f

i
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e
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from which the weights are computed after the evaluation of
expressions forRi(r ,t;xj 21 ,xj 11). This is achieved by defining
the variablex5Az1B with A5(xj 112xj 21)/2 and B5(xj 11
1xj 21)/2, and by approximating the Bessel’s functions of the fi
kind, Jp(rx) andJq(tx) in integrals in Eq.~B5! using the Cheby-
chev polynomials of the first kind as

Jp@r ~Az1B!#5 (
m50

M

amTm~z! (B7)

and

Jq@ t~Az1B!#5 (
m50

M

bmTm~z! (B8)

where( denotes a finite sum whose first and the last term are
be halved. The coefficients are then given by

am5
2

M (
k50

M

Jp@r ~Azk1B!#cos~mkp/M ! (B9)

bm5
2

M (
k50

M

Jq@ t~Azk1B!#cos~mkp/M ! (B10)

in which zk5cos(kp/M). Substitution from Eqs.~B7! and ~B8!
into Eq. ~B5! results in

Ri5A(
m50

M

(
n50

N

ambnE
21

1

~Az1B! iTm~z!Tn~z!dz with i 50,1,2.

(B11)

This expression permits the explicit evaluation ofRi with the
following identities:
E
21

1

Tm~z!Tn~z!dz52H 1

~m1n!221
1

1

~m2n!221
; m1n5even

0; m1n5odd

E
21

1

zTm~z!Tn~z!dz52H 1

~m1n!2222 1
1

~m2n!2222 ; m1n5odd

0; m1n5even

E
21

1

z2Tm~z!Tn~z!dz52
1

4 H 1

~m1n!221
1

1

~m2n!221
1

3

~m1n!2232 1
3

~m2n!2232 ; m1n5even

0; m1n5odd.
ic
or C

,’’

in

in

ic

a

in
Substitution forRi and numerically inverting the system of Eq
~B6! leads to the integration weights. Finally, the approxim
value of the integral is calculated from Eq.~B11!. The accuracy of
this integration algorithm is demonstrated by considering the
lowing infinite integral:

I 5E
0

`

xe2x2
J0~x!J0~x!dx

with an exact solution ofI 5e21/2I 0(1/2)/250.32252 in whichI 0
is the modified Bessel’s function of the second kind. Its numer
evaluation withN5200 andM54 for a50 andb5100 leads to
a value of 0.32259.
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Antiplane Deformations for
Anisotropic Multilayered Media
by Using the Coordinate
Transform Method
Green’s functions for anisotropic elastic multilayered media subjected to antiplane s
deformation are presented in this study. The antiplane shear deformation due to a
centrated shear force and screw dislocation in an arbitrary layer was investigate
detail. A linear coordinate transformation is introduced in this study to simplify
problem. The linear coordinate transformation reduces the anisotropic multilayered p
lem to an equivalent isotropic problem without complicating the geometry of the prob
Explicit analytical solutions were derived using the Fourier transform and the se
expansion technique. The complete solutions for the multilayered problem consist o
the simplest solutions obtained from an infinite homogeneous medium with concen
loadings. Numerical results for the full-field stress distribution in multilayered me
subjected to a point body force are presented. These numerical results were com
with the solutions obtained by considering the multilayered medium as one layer
effective elastic constants determined from the averaged material constants of the
layered medium. It is found that the shear stresstyz of the homogeneous one laye
solution is a very good approximation of the result for the multilayered medium; howe
the shear stresstxz in these two solutions has a large discrepancy due to the fact thatxz
is discontinuous at the interfaces of the multilayered medium.@S0021-8936~00!01703-7#
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1 Introduction
Antiplane shear deformations are the simplest of tw

dimensional deformations that arise in anisotropic or isotro
elastic bodies. For the antiplane shear deformation, the displ
ment is parallel to the axial coordinate that is normal to the pl
and is dependent only on the coordinates in the plane. Such
formation field characterized by a single axial displacement
be regarded as complementary to that of plane-strain deforma
~e.g., @1#!. The antiplane problem plays a useful role as a p
problem that reveals simpler aspects of elasticity solutions.
antiplane problem of two dissimilar anisotropic wedges has b
considered by Ma@2# and Ma and Hour@3# using the Mellin
transform method. They showed that the stress and displace
fields have reduced dependence on the elastic constants. R
@4# did the antiplane stress analysis of a cracked beam mad
orthotropic material. Wu and Chiu@5# discussed interface crack
in anisotropic bimaterials subjected to antiplane shearing. Ting@6#
also provided many basic discussions and investigated some
damental problems for anisotropic antiplane deformations. In
dition, considerable attention has been paid to the analysis o
tiplane shear deformation in nonlinear elasticity theory
isotropic solids, cf. Jiang and Knowles@7#, Polignone and Horgan
@8# and the references therein. A comprehensive review of a
plane shear for both linear and nonlinear elasticity is given
Horgan@9#.

Analysis of anisotropic elasticity problems is often tedious d
to the presence of many elastic constants. It is desirable to re
the dependence on elastic constants through theoretical cons

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
3, 1999; final revision, Nov. 30, 1999. Associate Technical Editor: M.-J. Pind
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Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
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Copyright © 2Journal of Applied Mechanics
o-
pic
ce-
ne
de-
an
tion
lot
he
en

ent
tting

e of
s

fun-
ad-
an-
or

nti-
by

ue
uce
ider-

ations in advance of the analysis of a given boundary value p
lem. For anisotropic elasticity, Lekhnitskii’s formulation~@10#!
and Stroh’s formulation~@11#! are the two widely used methods
The general solutions obtained by these methods showed tha
antiplane anisotropic problem can be converted to a correspon
isotropic problem by properly changing the geometry of the ori
nal configuration and the tractions on the boundary. In ot
words, the anisotropic antiplane problem can be simplified to
isotropic problem with the aid of a suitable coordinate transf
mation. In the isotropic case, the displacement equilibrium eq
tion becomes the Laplace equation which can be solved ea
For the anisotropic problem, however, the governing equilibri
equation is a general second-order partial differential equa
with constant coefficients. In particular, a variety of coordina
transformations could be used to convert the general second-o
partial differential equation to the Laplace equation. The prop
ties of the coordinate transformations for antiplane deformati
have been investigated by Ma@12# and Horgan and Miller@1#. An
orthotropic transformation concept was introduced by Yang a
Ma @13# to analyze the much complicated and difficult in-pla
deformations for planar anisotropic solids.

Because of the rapid expansion in the use of structural com
nents made of laminated materials, predictions of the behavio
multilayered media subjected to arbitrary loads are needed.
stress states at the interfaces of multilayered media are of par
lar interest because delamination may occur if allowable levels
exceeded. For multilayered anisotropic media, the problem
comes more complicated than that of homogeneous isotr
counterparts. Based on the mixed formulation of elasticity, Bu
@14# and Bahar@15# independently constructed the transfer mat
approach to solve multilayered media problems. A local/glo
stiffness matrix approach which is similar to the transfer mat
approach was employed by Pindera@16# and Pindera and Lane
@17,18# to solve round punch contact problems of arbitrarily lam

y
ra.
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nated media. The local/global stiffness matrix method is based
the systematic construction of a global stiffness matrix in terms
local stiffness matrices of the individual layers.

According to the classical Saint-Venant principle, the prec
decay factor of the stress with distance from the region of app
load depends on the geometry of the body, the boundary co
tions, the applied load and material properties. For layered me
this issue has been examined by Baxter and Horgan@19,20#. They
showed that material inhomogeneity significantly affects the pr
tical application of Saint-Venant’s principle to sandwich stru
tures. Wu and Chiu@21# have solved the problem of a sem
infinite multilayered monoclinic strip loaded by shear stress at
end by using eigenfunction expansion in conjunction with Bet
reciprocity theorem.

In the current study, an anisotropic elastic multilayered medi
with n layers subjected to antiplane loading within an arbitra
layer is investigated. The material properties and the thicknes
each layer are different. One of the objectives of this study is
develop an effective analytical methodology to construct the f
field solutions for this complicated problem. A general linear c
ordinate transformation is introduced in this study to simplify t
problem. This linear coordinate transformation will simplify th
governing equilibrium equation without complicating the boun
ary and interface continuity conditions. Based on this transform
tion, the original anisotropic multilayered problem is converted
an equivalent isotropic multilayered problem. The analytical so
tions for the stresses and displacement obtained in this study
exact and are expressed in an explicit closed form. For a num
cal example, a multilayered medium with 12 layers is discusse
detail. The stress distribution for the multilayered solution is co
pared with the homogeneous single layer solution by averag
the material constants of the multilayered medium.

2 Antiplane Shear Deformations of an Anisotropic
Elastic Solid

In the absence of body forces, the equilibrium equations for
elastostatic problem are

s i j , j50, (1)

where the repeated indices imply summation and a comma st
for differentiation. The generalized Hooke’s law for an anis
tropic, homogeneous, and linearly elastic solid is given by

s i j 5Ci jkl «kl , (2)

where«kl51/2(uk,l1ul ,k) denotes the infinitesimal strain tenso
andCi jkl are the elastic stiffnesses satisfying the usual symm
conditions. Due to the symmetry ofCi jkl , Eq.~2! can be rewritten
as

s i j 5Ci jkl uk,l . (3)

For a general anisotropic elastic material, an antiplane defor
tion or a plane deformation in general does not exist. For so
special anisotropic materials possessing elastic stiffnessesCi jkl
which are written in a contracted notation in the form

C53
C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 C34 C35 C36

C44 C45 0

sym. C55 0

C66

4 , (4)

the plane and antiplane deformations will be uncoupled and s
anisotropic elastic materials are capable of an antiplane defo
tion ~see, e.g., Horgan and Miller@1#, Ting @6#!.

For two-dimensional problems, the Cartesian coordinate sys
is chosen such that the antiplane deformation is in thez-direction.
598 Õ Vol. 67, SEPTEMBER 2000
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Let u, v, andw, respectively, represent the displacement com
nents in thex, y, andz-direction of the Cartesian coordinate sy
tem. For antiplane shear deformations,

u5v50, w5w~x,y!, (5)

and the relevant shear stresses are denoted bytyz andtxz . If the
material constants have the form represented in Eq.~4!, then the
equilibrium equations in thex andy-directions are automatically
satisfied, and the equilibrium equation in thez-direction can be
written in terms of the displacementw as

C55

]2w

]x2 12C45

]2w

]x]y
1C44

]2w

]y2 50. (6)

Equation~6! is the governing equation for an anisotropic antipla
deformation problem, and is a homogeneous second-order pa
differential equation for displacementw. The nonzero stresses ar
related to the displacement as follows:

tyz5C45

]w

]x
1C44

]w

]y
,

txz5C55

]w

]x
1C45

]w

]y
, (7)

szz5C35

]w

]x
1C34

]w

]y
.

For monoclinic materials with the plane of symmetryz50, C34
5C3550 so thatszz50.

3 Linear Coordinate Transformation
The governing equation expressed in Eq.~6! is a general homo-

geneous second-order partial differential equation with cons
coefficients. Such a linear partial differential equation can
transformed into the Laplace equation by a linear coordin
transformation~see, e.g., Horgan and Miller@1#!. A special linear
coordinate transformation is introduced as

FXYG5F1 a

0 b
G FxyG , (8)

where a52C45/C44, b5me/C44 and me5AC44C552C45
2 . As-

sume thatC44 andC55 as well asAC44C552C45
2 are all positive.

After the coordinate transformation, Eq.~6! can be rewritten as
the standard Laplace equation in the~X, Y! coordinate system

meS ]2w

]X2 1
]2w

]Y2D50. (9)

It is interesting to note that the mixed derivative disappears fr
Eq. ~6!. The relationships between the shear stresses in the
coordinate systems are given by

tyz~x,y!5me
]w~X,Y!

]Y
5tYZ~X,Y!,

txz~x,y!5bme
]w~X,Y!

]X
2ame

]w~X,Y!

]Y
(10)

5btXZ~X,Y!2atYZ~X,Y!.

In a mathematical sense, Eqs.~6! and~7! are transformed to Eqs
~9! and ~10! by the linear coordinate transformation expressed
Eq. ~8!, or in a physical sense, the governing Eq.~6! and the stress
displacement relation~7! of an anisotropic antiplane problem ar
converted into an equivalent isotropic problem by properly cha
ing the geometry of the body using the linear coordinate trans
mation, Eq.~8!. The coordinate transformation in Eq.~8! has the
following characteristics:~a! it is linear and continuous,~b! an
anisotropic problem is converted to an isotropic problem after
transformation, and~c! there is no stretching and rotation in th
Transactions of the ASME
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horizontal direction. These important features offer advantage
dealing with straight boundaries and interfaces in the multilaye
system discussed in the present study. The most interesting fe
is that a straight line (x1 ,y0),(x2 ,y0) that is parallel to thex-axis
will remain a straight line (X1 ,Y0),(X2 ,Y0) parallel to theX-axis
after the transformation, and the length of the line will not chan
i.e., X22X15x22x1 . The relationship between the anisotrop
problem and the corresponding isotropic problem in the polar
ordinate system and more detailed discussions of this linear c
dinate transformation were presented by Ma@12#.

The linear coordinate transformation described by Eq.~8! can
be used to solve the anisotropic antiplane problem for onl
single material. However, for a multilayered anisotropic medi
with straight interfaces shown in Fig. 1, a modification of t
linear coordinate transformation will be introduced in the follo
ing section to transform the multilayered anisotropic problem
an equivalent multilayered isotropic problem.

4 Formulations for Multilayered Media Subjected to
Interior Loadings

In the following sections, the Green’s function for an anis
tropic n-layered medium will be constructed. Consider an ani
tropic n-layered medium withn layers subjected to a line of con
stant forcef z and a screw dislocation of magnitudebz along the
z-axis located in themth layer. The displacement and she
stresses are independent of thez-axis and so we can consider th
problem as a two-dimensional antiplane problem. In other wo
the original problem can be simplified as a two-dimensional m
tilayered medium subjected to a point shear force and a sc
dislocation shown in Fig. 1. The displacement equilibrium eq
tion in each layer is expressed as

C55
j

]2wj

]x2 12C45
j

]2wj

]x]y
1C44

j
]2wj

]y2 50, j 51,2, . . . ,n.

(11)

The boundary conditions on the top and bottom surfaces of
layered medium are

tyz
1 ~x,0!50, tyz

n ~x,hn!50. (12)

The jump conditions for the shear stress and displacement ac
the point loads within themth layer are

tyz
m1

~x,h1!2tyz
m2

~x,h2!52 f zd~x!,
(13)

wm1
~x,h1!2wm2

~x,h2!52bzU~x!,

Fig. 1 Configuration and coordinates system of an aniso-
tropic multilayered medium
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whered~ ! is the delta function andU~ ! is the heaviside function.

In Eq. ~13!, tyz
m1

and tyz
m2

indicate the shear stress above a
below the plane of applied loadings in themth layer;h1 andh2

denote the position just above and below the applied loading
y5h ~see Fig. 1!. Application of the traction and displacemen
continuity conditions at the interface between thej th and j 11th
layer, yields

t yz
j ~x,hj !5t yz

j 11~x,hj !,
wj~x,hj !5wj 11~x,hj !,

j 51,2, . . . ,n21. (14)

In order to maintain the geometry of the layered configuration,
linear coordinate transformation described in Eq.~8! is modified
for each layer as follows:

FXYG5F1 a j

0 b j
G FxyG1(

k51

j 21

hkFak2ak11

bk2bk11
G , j 51,2, . . . ,n. (15)

Comparing with Eq.~8!, the first term on the right-hand side o
Eq. ~15! retains exactly the same form while the second summ
tion term becomes the modified term. The new coordinate tra
formation possesses the following characteristics:~a! no gaps or
overlaps are generated along the interface and~b! no sliding and
no mismatches occur along the interface. The geometric confi
ration in the transformed~X, Y! coordinate is shown in Fig. 2
Note that while the thickness of each layer is changed, the in
faces are parallel to theX-axis. Thus, the new geometric configu
ration is similar to the original problem.

The equilibrium equations in the transformed coordinate
governed by the standard Laplace equation expressed by

m j
e

]2wj

]X2 1m j
e

]2wj

]Y2 50. (16)

The displacementw and the shear stresstYZ are continuous along
the interfaces in the transformed coordinates,

wj~X,H j !5wj 11~X,H j !, t YZ
j ~X,H j !5t YZ

j 11~X,H j !,

j 51,2, . . . ,n21, (17)

where

H j5b jhj1(
k51

j 21

~bk2bk11!hk .

The top and bottom surfaces are traction free and can be
pressed as

tYZ
1 ~X,0!50, tYZ

n ~X,Hn!50. (18)

Fig. 2 Configuration and coordinates system for the multilay-
ered medium after the linear coordinate transformation
SEPTEMBER 2000, Vol. 67 Õ 599
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The jumps within themth layer caused by the applied antiplan
body force and screw dislocation are shown in Fig. 3, and
jump conditions are

tYZ
m1

~X,H1!2tYZ
m2

~X,H2!52 f zd~X2H8!,
(19)

wm1
~X,H1!2wm2

~X,H2!52bzU~X2H8!,

where

H85amh1 (
k51

m21

~ak2ak11!hk ,

H5bmh1 (
k51

m21

~bk2bk11!hk .

HeretYZ
m1

andtYZ
m2

indicate the shear stress above and below
applied loadings, respectively, in themth layer ~see Fig. 3!. The
location of the applied loadings is shifted by an amount ofH8 in
the horizontal direction. The stress displacement relations
pressed in the~X, Y! coordinates within each layer become

t XZ
j ~X,Y!5m j

e
]wj~X,Y!

]X
,

(20)

t YZ
j ~X,Y!5m j

e
]wj~X,Y!

]Y
.

The boundary value problem described by Eqs.~16!–~20! is simi-
lar to the multilayered problem for an isotropic material. Hen
the linear coordinate transformation presented in Eq.~15! changes
the original anisotropic multilayered problem to the correspond
isotropic multilayered problem with a similar geometric config
ration and boundary conditions. In the next section, the bound
value problem described by Eqs.~16!–~20! will be solved, and the
relationships between the shear stresses in the~x, y! and ~X, Y!
coordinates established in Eq.~10! will be used to obtain the
solutions for the original anisotropic multilayered problem.

5 Fundamental Solutions in the Transformed Domain
The boundary value problem of the previous section can

solved by the integral transform technique. The expressions
the field variables will be found by applying a Fourier transfo
over the spatial coordinateX with parameterv. Take the Fourier
transform pairs defined as

g̃~v,Y!5E
2`

`

g~X,Y!e2 ivXdX,

g~X,Y!5
1

2p E
2`

`

g̃~v,Y!eivXdv,

and apply to the governing Eq.~16!. Then, Eq.~16! becomes an
ordinary differential equation with the following general solutio
in the Fourier transformed domain:

F w̃j

t̃ YZ
j G5F evY e2vY

m j
evevY 2m j

eve2vYG Fcj

dj
G . (21)

Fig. 3 The jump conditions for applied loadings at the mth
layer
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Here cj and dj are undetermined coefficients for each layer a
can be obtained by applying the boundary, continuity and ju
conditions. Substituting the general solution into the continu
conditions at the interfaces, the recurrence relation for the co
cients for each layer can be expressed as

Fcj 11

dj 11
G5 1

sj8
G1~ j !Fcj

dj
G , (22)

or

Fcj

dj
G5 1

sj9
G2~ j !Fcj 11

dj 11
G , (23)

where

G1~ j !5F 1 t je
22vH j

t je
2vH j 1 G ,

G2~ j !5F 1 2t je
22vH j

2t je
2vH j 1 G ,

t j5
m j 11

e 2m j
e

m j
e1m j 11

e , sj85
2m j 11

e

m j
e1m j 11

e , sj95
2m j

e

m j
e1m j 11

e .

Heret j is called the reflection coefficient andsj8 ,sj9 are the refrac-
tion coefficients. By applying the boundary condition for the t
layer t̃YZ

1 (v,0)50, c15d1 is obtained, and along with Eq.~22!,
the coefficients for themth layer can be related to those of the fir
layer as follows:

F cm
1

dm
1G5 )

k51

m21
1

sk8
G1~m2k!Fc1

c1
G , (24)

where

)
k51

n

ak5a1•a2¯an .

Similarly, by applying the boundary condition for the botto
layer t̃ YZ

n (v,Hn)50, cn5dne22vHn is obtained, and along with
Eq. ~23!, the coefficients for themth layer can be represented b

F cm
2

dm
2G5)

k5m

n21
1

sk9
G2~k!Fdne22vHn

dn
G . (25)

Finally, the jump conditions in themth layer in the transformed
domain are employed

cm
1evH1dm

1e2vH2cm
2evH2dm

2e2vH5
ibz

v
e2 ivH8,

(26)

cm
1evH2dm

1e2vH2cm
2evH1dm

2e2vH5
2 f z

mm
e v

e2 ivH8,

wherei 5A21 and Eq.~26! can be written in a matrix form as

FevH e2vH

evH 2e2vHG H F cm
1

dm
1G2F cm

2

dm
2G J 5F ibz

v

2 f z

mm
e v

G e2 ivH8. (27)

For convenience, setcm
15A1c1 , dm

15A2c1 , cm
25B1dn and dm

2

5B2dn , whereA1 , A2 , B1 and B2 are constants which can b
expressed in matrix form as

FA1

A2
G5 )

k51

m21
1

sk8
G1~m2k!F11G , FB1

B2
G5)

k5m

n21
1

sk9
G2~k!Fe22vHn

1 G .
(28)
Transactions of the ASME
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Therefore, Eq.~27! can be reformulated and coefficientsc1 anddn
are found as follows:

Fc1

dn
G5 1/2

A1B22A2B1
FB2 2B1

A2 2A1
GFe2vH e2vH

evH 2evHG
3F ibz

v
2 f z

mm
e v

G e2 ivH8. (29)

The undetermined constantscj anddj for each layer are obtaine
with the aid of the recurrence relations given in Eqs.~22! and
~23!. After substituting the coefficientscj anddj into Eq.~21!, the
full-field solutions for each layer are completely determined in
transformed domain. Omitting the lengthy algebraic derivati
the general solutions for each layer are finally expressed as

F w̃j

t̃ YZ
j G5

2e2 ivH8

2~A2B12A1B2!vmm
e ~B2e2vH~ f z2 imm

e bz!

1B1evH~ f z1 imm
e bz!!•F evY e2vY

m j
evevY 2m j

eve2vYG
3H)

k51

j 21
1

sk8
F 1 t j 2ke

22vH j 2k

t j 2ke
2vH j 2k 1 G J F11G , (30)

for 1< j <m. And for m< j <n,

F w̃j

t̃ YZ
j G5

2e2 ivH8

2~A2B12A1B2!vmm
e ~A2e2vH~ f z2 imm

e bz!

1A1evH~ f z1 imm
e bz!!•F evY e2vY

m j
evevY 2m j

eve2vYG
3H)

k5 j

n21
1

sk9
F 1 2tke

22vHk

2tke
2vHk 1 G J Fe22vHn

1 G . (31)
s

Journal of Applied Mechanics
he
n,

6 Full-Field Solutions and Their Physical Meaning
The complete solutions in the Fourier transformed domain

multilayered media have been presented in Eqs.~30! and ~31! in
the previous section. The solutions are so complicated that it is
easy to obtain the inverse Fourier transform. In order to const
the explicit analytical full-field solution of then-layered medium,
the Taylor series expansion is used in this study.

Because of the denominators in Eqs.~29!–~31!, it is impossible
to invert the Fourier transform directly. By examining the stru
ture of the denominator of Eq.~29!, both the numerator and de
nominator are multiplied by a constantS5()k51

m21sk8)()k5m
n21 sk9).

Then it becomes

Fc1

dn
G5 S/2

S~A1B22A2B1!mm
e v

FB2 2B1

A2 2A1
GFe2vH e2vH

evH 2evHG
3F imm

e bz

2 f z
Ge2 ivH8. (32)

The denominator in Eq.~32!, S(A1B22A2B1), can be decom-
posed into the form of (12p) wherep512S(A1B22A2B1). It
can be shown thatp,1 for v.0. By a series expansion, w
obtain 1/12p5( l 50

` pl so that Eq.~32! can be rewritten as

Fc1

dn
G5 S

2v FB2 2B1

A2 2A1
GFe2vH e2vH

evH 2evHGF ibz

2 f z

mm
e
G e2 ivH8

•(
l 50

`

pl .

(33)

Now, the solutions forc1 and dn are linear combinations of ex
ponential functions, i.e.,Mie

6 f (v,Hi ), and so arecj anddj . Note
thatMi are constants which denote the magnitude of the expon
tial function, andf (v,Hi) are functions ofv andHi .

The solutions for the displacement and shear stress in Eqs.~30!
and~31! can also be expressed in similar forms. By a complica
algebraic derivation, the explicit expressions for displacement
shear stress in the Fourier transformed domain are obtaine
follows:
w̃j5(
l 50

`

(
k51

N
Mk

mm
e v F2~ f z2 imm

e bz!e
v~Y2H1Fk

c8!2~ f z1 imm
e bz!e

v~Y1H1Fk
c9!

2~ f z2 imm
e bz!e

2v~Y1H2Fk
d8!2~ f z1 imm

e bz!e
2v~Y2H2Fk

d9!Ge2 ivH8,

(34)

t̃ YZ
j 5(

l 50

`

(
k51

N
m j

eMk

mm
e F2~ f z2 imm

e bz!e
v~Y2H1Fk

c8!2~ f z1 imm
e bz!e

v~Y1H1Fk
c9!

1~ f z2 imm
e bz!e

2v~Y1H2Fk
d8!1~ f z1 imm

e bz!e
2v~Y2H2Fk

d9!Ge2 ivH8,
where

H N52n1 j 2m21
•~2n21! l , 1< j <m,

N52n1m2 j 21
•~2n21! l , m< j <n.

Here n is the number of layers,m denotes the layer that i
subjected to the applied loading, andj is the j th layer where the

solution is required. The termsMk , Fk
c8 , Fk

c9 , Fk
d8 , andFk

d9 in
Eq. ~34! are very complicated and difficult to present. The follow
ing functions are first defined as
-

H a151, f 1
A50,

ai 12k215aitk , k51,2̄ m21,

f i 12k21
A

52~ f i
A12Hk!, i 51,2̄ 2k21,

(35a)

5
b151, f 1

B1522Hn , f 1
B250,

bi 12k2152bitn2k , k51,2̄ n2m,

f
i 12k21

B1 52~ f i
B112Hn12Hn2k!, i 51,2̄ 2k21,

f
i 12k21

B2 52~ f i
B212Hn22Hn2k!,

(35b)
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H r ~ i 21!•2n2m1k
p

52aibk , r 2n211~ i 21!•2m211k
p

5aibk , i 51,2,̄ 2m21,

g~ i 21!•2n2m1k
p

5 f i
A1 f k

B2, g2n211~k21!•2m211 i
p

5 f k
B12 f i

A , k51,2,̄ 2n2m,
(35c)

5 r k
l 5)

051

l

r l 0
p , i 1 ,i 2 ,3 , ¯ i l52,3,¯2n,

gk
l 5(

051

l

gl 0
p , k5(

051

l 21

~ i 022!~2n21!1~ i l21!,

(35d)

for l 50, r i 0
0 51 andgi 0

0 50.
For the case of 1< j <m, the following functions are defined:

5
f ~ i 21!•2n2m1k

c8 5 f k
B21 f i

A ,

f ~ i 21!•2n2m1k
c9 5 f k

B11 f i
A , i 51,2,¯2 j 21,

f ~ i 21!•2n2m1k
d8 5 f k

B22 f i
A , k51,2,¯2n2m.

f ~ i 21!•2n2m1k
d9 5 f k

B12 f i
A ,

(35e)

Finally, the termsMk , Fk
c8 , Fk

c9 , Fk
d8 , andFk

d9 indicated in Eq.~34! can be expressed explicitly as

5
M ~k21!•2n1 j 2m211 i5

21

2 S )
05 j

m21

S08D r k
l r i

p ,

F ~k21!•2n1 j 2m211 i
c8 5gk

l 1 f i
c8 , k51,2,¯~2n21! l ,

F ~k21!•2n1 j 2m211 i
c9 5gk

l 1 f i
c9 , i 51,2,¯2n1 j 2m21.

F ~k21!•2n1 j 2m211 i
d8 5gk

l 1 f i
d8 ,

F ~k21!•2n1 j 2m211 i
d9 5gk

l 1 f i
d9 ,

(35f)

For the case ofm< j <n, the expressions are

5
f ~ i 21!•2m211k

c8 5 f i
B11 f k

A ,

f ~ i 21!•2m211k
c9 5 f i

B11 f k
A , i 51,2,¯2n2 j ,

f ~ i 21!•2m211k
d8 5 f i

B22 f k
A , k51,2,¯2m21.

f ~ i 21!•2m211k
d9 5 f i

B21 f k
A ,

(35g)

The termsMk , Fk
c8 , Fk

c9 , Fk
d8 , andFk

d9 are presented by

5
M ~k21!•2n2 j 1m211 i5

1

2 S )
05m

j 21

S09D r k
l r 2n211 i

p ,

F ~k21!•2n2 j 1m211 i
c8 5gk

l 1 f i
c8 , k51,2,¯~2n21! l ,

F ~k21!•2n2 j 1m211 i
c9 5gk

l 1 f i
c9 , i 51,2,¯2n1m2 j 21.

F ~k21!•2n2 j 1m211 i
d8 5gk

l 1 f i
d8 ,

F ~k21!•2n2 j 1m211 i
d9 5gk

l 1 f i
d9 ,

(35h)
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The structures of the complete solutions given in Eq.~34! have
some interesting characteristics. The solutions are compose
infinite terms, and it is interesting to note that each term repres
the solution in the transformed domain for a concentrated load
in an infinite homogeneous medium. The term with (Y6H6Fk)
in the exponential functions indicates the location of the loadi
However,Mkbz andm j

e/mm
e Mkf z represent the magnitudes of th

concentrated dislocation and force, respectively.Fk is dependent
on the locations of the interfaces, i.e.,H j , andMk depends only
on the reflection and refraction coefficients, i.e.,t j , sj8 , andsj9 .

Only one term in the infinite series of Eq.~34! represents the
602 Õ Vol. 67, SEPTEMBER 2000
d of
nts
ing

g.
e

applied concentrated forcef z and dislocationbz in an infinite
medium atY5H andX5H8, all the remaining terms are imag
forces and dislocations that are induced to satisfy the bound
and interface conditions. This method is referred to as the met
of images. The advantage of this method is that the solution
problems with complicated geometric configurations can be c
structed by superposing the solution in an infinite medium. T
mathematical derivation in this section provides an automatic
termination for the locations and magnitudes of all the ima
forces.

Since the solutions in the transformed domain expressed in
Transactions of the ASME
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~34! are exponential functions ofv, only two different inverse
Fourier transformations for exponential functions are requir
which are

E
2`

`

e2v~Y6H6Fk!
•e2 ivH8

•eivXdv

5
1

p

Y6H6Fk

~X2H8!21~Y6H6Fk!
2 ,
p

i
d

r

r

b

t
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d, E
2`

` 1

v
e2v~Y6H6Fk!

•e2 ivH8
•eivXdv

5
21

2p
ln@~X2H8!21~Y6H6Fk!

2#. (36)

Therefore, the inverse Fourier transformation for Eq.~34! can be
easily derived and the results are
wj5(
l 50

`

(
k51

N
Mk

p 5 bzF 2tan21
Y2H1Fk

c8

X2H8
1tan21

Y1H1Fk
c9

X2H8

1tan21
Y1H1Fk

d8

X2H8
2tan21

Y2H2Fk
d9

X2H8

G
1

f z

2mm
e F ln~~X2H8!21~Y2H1Fk

c8!2!1 ln~~X2H8!21~Y1H1Fk
c9!2!

1 ln~~X2H8!21~Y1H2Fk
d8!2!1 ln~~X2H8!21~Y2H2Fk

d9!2!
G 6 ,

(37)

t YZ
j 5(

l 50

`

(
k51

N
m j

eMk

p

¦

bzF 2~X2H8!

~X2H8!21~Y2H1Fk
c8!2

1
~X2H8!

~X2H8!21~Y1H1Fk
c9!2

1
~X2H8!

~X2H8!21~Y1H2Fk
d8!2

2
~X2H8!

~X2H8!21~Y2H2Fk
d9!2

G
1

f z

mm
e F Y2H1Fk

c8

~X2H8!21~Y2H1Fk
c8!2

1
Y1H1Fk

c8

~X2H8!21~Y1H1Fk
c9!2

Y1H2Fk
d8

~X2H8!21~Y1H2Fk
d8!2

1
Y2H2Fk

d9

~X2H8!21~Y2H2Fk
d9!2
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Finally, by substitutingX andY defined in Eq.~15! into Eq. ~37!,
and using the displacement and stress relations in Eq.~10!, the
complete solutions for the original problem of the anisotro
multilayered medium can be obtained. Equation~37! is the ex-
plicit expression of the Green’s function for the multilayered m
dium subjected to the antiplane shear deformation.

7 Numerical Examples and Discussions
The full-field analysis of shear stresses in a layered med

consisting of 12 layers subjected to interior forces is presente
this section. In the analysis of a nonhomogeneous multilaye
medium, it is sometimes the practice to treat the multilaye
medium as a single homogeneous layer with effective or hom
enized stiffness constants. The differences in the stress dist
tions between layered medium with 12 layers and one homo
neous layer with the effective material constants obtained fr
the averaged material properties of 12 layers will be discusse
detail. The effective stiffness constants of one homogeneous la
C̃i j , are obtained from the homogenized weighted properties
the 12 layers using the formula

C̃i j 5

(
k52

n

Ci j
k ~hk2hk21!1Ci j

1 h1

hn
. (38)

As indicated in Eq.~38!, the effective stiffness constants are o
tained by averaging the stiffness constants over the thicknes
each layer. The complete explicit expressions for the displacem
and shear stress given in Eqs.~35! and~37! are used to construc
the program for numerical calculations. For the 12-layered m
ic
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dium, the thickness of each layer is the same and equal to 1,
the elastic stiffness constants for each layer are listed as follo

@C44
1 ,C45

1 ,C55
1 ;C44

2 ,C45
2 ,C55

2 ; . . . ;C44
12,C45

12,C55
12#

5@3960,0,7170;7170,1220,3960;3960,

21220,7170;3585,610,3960;3960,

2610,3585;4430,0,0,4430;1980;0,1980;7170,1220,3585

5158,2610,3585;3585,0,5185;3960,0,3960;6160,

22440,3330#GPa.

The effective elastic constants for one homogeneous layer
tained from Eq.~38! are

@C̃44,C̃45,C̃55#5@4347,2169,4131#GPa.

An antiplane body forcef z is applied within the seventh layer a
x50 andy56.5. The distributions of the shear stresstyz along
the y-axis atx50 andx52 are shown in Figs. 4 and 5, respe
tively. In addition, thetxz stress distributions along they-axis at
x50 andx52 are displayed in Figs. 6 and 7, respectively. T
generate the shear stress distributions, the series solution is
cated if the numerical calculation is within the accuracy of 0
percent.

As shown in Figs. 4 and 5, the multilayered solution fortyz is
continuous at the interfaces and approaches zero at the top
bottom boundaries. The results oftyz for multilayered solutions
and one homogeneous layer solution are closely related atx50,
and only a small difference appears atx52. This implies that the
SEPTEMBER 2000, Vol. 67 Õ 603
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Fig. 4 Distribution of tyz at xÄ0 along y -axis for the 12-layered medium and
one homogeneous layer

Fig. 5 Distribution of tyz at xÄ2 along y -axis for the 12-layered medium and
one homogeneous layer

Fig. 6 Distribution of txz at xÄ0 along y -axis for the 12-layered medium and
one homogeneous layer
MBER 2000 Transactions of the ASME
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Fig. 7 Distribution of txz at xÄ2 along y -axis for the 12-layered medium and
one homogeneous layer
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shear stresstyz of the multilayered problem can be obtained wi
good approximation from the result of a much simpler one hom
geneous layer solution. As indicated in Figs. 6 and 7, sincetxz is
discontinuous at the interfaces for the multilayered solution,
results for multilayered solution and one homogeneous layer
lution differ substantially. This indicates that it is not suitable
use the single homogeneous layer solution to simulate the m
layered problem for the shear stresstxz .

8 Concluding Remarks
An analytical investigation of multilayered anisotropic med

subjected to concentrated forces and screw dislocations has
provided in this study. A general linear coordinate transformat
for multilayered media was introduced to simplify the governi
equilibrium equation without complicating the boundary and
terface continuity conditions. With this linear coordinate transf
mation, the original anisotropic multilayered problem can be
duced to an equivalent isotropic multilayered problem. The lin
coordinate transformation introduced in this study substanti
reduces the dependence on elastic constants in the antiplan
isotropic multilayered media. By using the Fourier transform te
nique and a series expansion, analytical solutions for displacem
and stresses are presented in an explicit form. The complete
tions for this complicated problem consist only of very simp
solutions obtained from an infinite homogeneous medium w
concentrated loadings. Except for the original applied loading,
remaining terms in the infinite series are image forces which
induced to satisfy the boundary and interface conditions. T
mathematical approach introduced in this study provides an a
matic determination for the locations and magnitudes of all
image forces. A computational program for numerical calculat
of the full-field analysis is easily constructed by using the expl
formulation of the solutions. In order to simplify the problem, t
nonhomogeneous multilayered medium is sometimes treated
single homogeneous layer with effective material consta
Hence the numerical results for the multilayered problem w
compared with the solutions obtained by considering the multil
ered medium as a single homogeneous layer with effective m
rial constants.
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Elastodynamic Fracture Analysis
of Multiple Cracks by Laplace
Finite Element Alternating
Method
The Laplace finite element alternating method, which combines the Laplace trans
technique and the finite element alternating method, is developed to deal with the e
dynamic analysis of a finite plate with multiple cracks. By the Laplace transform t
nique, the complicated elastodynamic fracture problem is first transformed into
equivalent static fracture problem in the Laplace transform domain and then solve
the finite element alternating method developed. To do this, an analytical solution by
and Ma for an infinite plate with a semi-infinite crack subjected to exponentially dis
uted loadings on crack surfaces in the Laplace transform domain is adopted. Finally
real-time response can be computed by a numerical Laplace inversion algorithm
technique established is applicable to the calculation of dynamic stress intensity fact
a finite plate with arbitrarily distributed edge cracks or symmetrically distributed cen
cracks. Only a simple finite element mesh with very limited number of regular eleme
necessary. Since the solutions are independent of the size of time increment tak
dynamic stress intensity factors at any specific instant can even be computed by a
time-step instead of step-by-step computations. The interaction among the crack
finite geometrical boundaries on the dynamic stress intensity factors is also discuss
detail. @S0021-8936~00!02103-6#
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1 Introduction

When a stress wave is disturbed by the presence of cra
some of the waves are reflected and others are refracted. T
withal, the singular behavior in the elastodynamic stress field~@1#!
is found around the crack tip. In general, the time-dependent
namic stress intensity factor has a peak value higher than
corresponding static value. These phenomena of scattering
singularity have received much attention in seismology, as we
in some material testing techniques. Hence, the study of elast
namic response with the events of scattering and singularity
existing cracks under dynamic loadings becomes increasi
important.

In general, the elastodynamic response for a finite cracked b
subjected to dynamic loadings is difficult to obtain analytical
The analytical solutions for such problems are limited to simp
fied cases with infinite or semi-infinite domains. Sih and Loe
@1,2# made a detailed study of a finite crack in an infinite plan
strain plate subjected to plane harmonic compressive and s
waves by an integral transform method. Mal@3# used a Fredholm
integral equation to yield the near-field as well as far-field stres
of Sih’s problem under a harmonic compressive wave. Thau
Lu @4,5# investigated the mode I and mode II dynamic stress
tensity factors of a finite crack in an infinite plane-strain pla
subjected to plane dilatational and horizontal shear waves inci
on the crack surface by a generalized Wiener-Hopf techni

1Currently, Engineer, Opto-Electronics & Systems Laboratories, Industrial Te
nology Research Institute.

2Currently, Associate Professor, Hua Fan University.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
7, 1999; final revision, Dec. 26, 1999. Associate Technical Editor: A. K. Mal. D
cussion on the paper should be addressed to the Technical Editor, Professor Le
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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~@6#!. It was found that the elastodynamic responses could be u
30 percent higher than the static values depending on Poiss
ratio.

An analytical approach which combined the Laplace transfo
method and Wiener-Hopf technique was developed by Freund@7#
to deal with an elastic plate containing a semi-infinite crack s
jected to a concentrated tensile impact loading on the crack
faces. Brock@8# took the Freund’s solution as the Green’s fun
tion to solve the problem with the impact loading distributed
the semi-infinite crack arbitrarily. Since multiple integrals i
volved in the formulation, only the dynamic stress intensity fa
tors are computed. Tsai and Ma@9# used the Freund’s metho
~@7#! to evaluate not only the dynamic stress intensity factors
also the stress response of the same cracked plate, but with
impact loading distributed on the crack surfaces exponentially

It is noted that all those analytical solutions as mentioned ab
were valid only for the problems with a crack in infinite or sem
infinite domains. However, many of practical problems are a fin
domain containing multiple cracks under complex dynamic lo
ings. Generally, they are difficult or nearly impossible to tack
analytically.

Numerical methods have been proven to be efficient tools in
determination of dynamic stress intensity factors for general
ometry as well as complex dynamic loadings. Among the num
cal methods, finite difference method~@10#!, finite element
method~@11–13#!, and boundary element method~@14,15#! have
been adopted to analyze the elastodynamic fracture problems.
numerical experiments indicate that the accuracy of the dyna
stress intensity factors computed by these methods is stro
mesh dependent. In addition, to the author’s best knowledge,
little work has been done for the elastodynamic analysis of m
tiple cracks.

The present Laplace finite element alternating method, wh
combines the advantages of the Laplace transform technique
the finite element alternating procedure, is thus proposed to
with the elastodynamic analysis of a finite plate with multip
cracks. By the Laplace transform technique, the governing pa
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differential equations as well as the corresponding time-depen
boundary conditions can be transformed an equivalent static p
lem in Laplace transform domain. Thereafter, the solutions in
Laplace transform domain can be solved easily by the finite
ment alternating method~@16#!. The so-called finite element alter
nating method which is the combination of the conventional fin
element procedure and the Schwarz-Neumann alternating t
nique has been successfully developed for two-dimensio
~@16,17#!, three-dimensional~@18–20#!, and plate bending~@21#!
static fracture problems with multiple cracks. The real-time
sponses are then computed by the numerical Laplace inver
algorithm of Honig and Hirdes@22#.

When carrying out the finite element alternating procedure
the Laplace domain, the Laplace domain analytical solution o
infinite plate with a semi-infinite crack subjected to an approp
ately distributed loading is necessary. However, the analytical
lution of Brock @8# is difficult to be applied for the present tech
nique because multiple integrals are involved in the formulati
Also, the limitation of the Laplace parameter used in Tsai a
Ma’s solution ~@9#! restricts its direct application and necessa
modification is done in the present analysis.

The studies of the work include:~1! the computation of the
dynamic stress intensity factors for a finite plate with arbitrar
distributed multiple edge cracks or symmetrically distributed m
tiple central cracks under impact loadings, and~2! the effect of the
cracks and finite geometric boundaries on the dynamic stres
tensity factors. Only a simple Laplace finite element model w
very limited number of regular elements is required. Besid
since the size of time increment can be taken arbitrary, the
namic stress intensity factors at any specific instant can eve
determined by a single time increment. The present techn
established will be helpful for the development of seismology
nondestructive testing technique to detect the presence of cr
in material.

2 Tsai and Ma’s Solution „†9‡…
During the operation of the finite element alternating pro

dures in the Laplace domain, to simulate the traction-free co
tion on the crack surfaces, it is necessary to release the stres
the location of fictitious cracks in an uncracked plate. Althou
Tsai and Ma’s solution~@9#! can provide relevant stress field at th
fictitious crack, the solution cannot be applied to the present te
nique directly because the Laplace parameterp is constrained as
real and positive.

For clarity, the Tsai and Ma’s solution is first briefly stated
follows. In the Laplace transform domain, as seen in Fig. 1, c
sider an infinite plate containing a semi-infinite crack subjected
an exponentially distributed normal tractionephNx1 and shear trac-
tion ephSx1 on the crack surfaces (2`,x1,0). These tractions
are transformed from real-time tractions by one-sided Lapl
transform with respect to time. The one-sided Laplace varia
p5v1 iw is a complex with its real and imaginary parts,v andw.
hN and hS are complex numbers for describing the prescrib
tractions. Since such a mixed boundary value problem is exc
ingly difficult to solve in the Laplace domain, Tsai and Ma@9#
used two-sided Laplace transform with respect tox1 in conjunc-
tion with the application of the Wiener-Hopf technique under t
assumption that the variablep is real and positive, say,p5v(v
.0).

Based on the displacementũi(x1 ,x2 ,v) and stress field
s̃ i j (x1 ,x2 ,v) in the Laplace transform domain derived by Ts
and Ma @9#, the Laplace domain solution for the problem wi
distributed loading applied on the semi-infinite crack can then
superposed from them. To obtain the real-time response,
Cagniard-de Hoop’s method~@23#! is employed, but is valid only
for the problem with infinite domain~@9#!. However, for the real-
time response of the elastodynamic fracture problems with fi
geometric boundary, it is very difficult to obtain analyticall
Hence, to solve such complicated problems, a numerical Lap
Journal of Applied Mechanics
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inversion algorithm~@22#! is adopted in this work. By this method
a sequence of selected complex Laplace parameterspk5v1 iwk
(k51,2, . . .N) instead of the real and positive Laplace parame
p5v, as taken in Tsai and Ma’s work~@9#!, need to be adopted
to obtain the real-time response at a specific instant~see the
Appendix!.

To confirm the Laplace parameterp to be a complex number
the Tsai and Ma’s Solution~@9#! is rewritten as

ũi~x1 ,x2,p!5
1

2p im E
z12 i`

z11 i`

@Ui
1~p,hN ,hS ,z!e2ax21zx1

1Ui
2~p,hN ,hS ,z!e2bx21zx1#dz (1)

and

s̃ i j ~x1 ,x2 ,p!5
1

2p i Ez12 i`

z11 i`

@Si j
1 ~p,hN ,hS ,z!e2ax21zx1

1Si j
2 ~p,hN ,hS ,z!e2bx21zx1#dz (2)

where

S11
1 5~b2p222z2!~b2p222a2!a1~phN!F~phN ,z!/a1~z!

22b2~z!z~b2p222a2!b1~phS!F~phS ,z!,

S11
2 524a2~z!b~z!a1~phN!z2F~phN ,z!

22b2~z!z~b2p222z2!b1~phS!F~phS ,z!,

S12
1 522a2~z!a1~phN!z~b2p222z2!F~phN ,z!

14ab2~z!b1~phS!z2F~phS ,z!,

S12
2 52a2~z!a1~phN!z~b2p222z2!F~phN ,z!

1~b2p222z2!2b1~phS!F~phS ,z!/b1~z!,

S22
1 5~b2p222z2!2a1~phN!F~phN ,z!/a1~z!

22z~b2p222z2!b2~z!b1~phS!F~phS ,z!,

S22
2 54z2a2~z!b~z!a1~phN!F~phN ,z!

12z~b2p222z2!b2~z!b1~phS!F~phS ,z!,

Fig. 1 An infinite plate with a semi-infinite crack subjected to
exponential normal and shear tractions in the Laplace domain
SEPTEMBER 2000, Vol. 67 Õ 607
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U1
15z~b2p222z2!a1~phN!F~phN ,z!/a1~z!

22z2b2~z!b1~phS!F~phS ,z!,

U1
2522a2~z!a1~phN!b~z!zF~phN ,z!

2~b2p222z2!b2~z!b1~phS!F~phS ,z!,

U2
152a2~z!a1~phN!~b2p222z2!F~phN ,z!

12zab2~z!b1~phS!F~phS ,z!,

and

U2
2522a2~z!a1~phN!z2F~phN ,z!

2z~b2p222z2!b1~phS!F~phS ,z!/b1~z!.

In the above,

F~ph,z!51/@2~b2p22a2p2!~ph2z!~cp2z!~cp1ph!

3S2~z!S1~ph!#,

S6~z!5expH 2
1

p

3E
ap

bp

tan21F4j2~j22a2p2!1/2~b2p22j2!1/2

~b2p222j2!2 G dj

j6zJ
a~z!5~a2p22z2!1/2, a1~z!5~ap1z!1/2, a2~z!5~ap2z!1/2,

b~z!5~b2p22z2!1/2,

b1~z!5~bp1z!1/2 and b2~z!5~bp2z!1/2,

andz is the variable of the two-sided Laplace transform.a, b, and
c denote the slowness of the longitudinal, shear, and Rayle
waves, respectively.

In the Laplace transform domain, since the piecewise cont
ous normal and tangential tractions on the crack surfaces ca
superposed by a series of exponential loadingsephNx1 andephSx1,
the complete analytical solutions of the displacement and st
can be thus superposed from Eqs.~1! and ~2!, respectively.

The mode I and mode II stress intensity factors in the Lapl
transform domainK̃ I(p) and K̃ II(p) are thus found as

K̃ I~p!52&
a1~phN!

p~c1hN!S1~phN!
, (3)

and

K̃ II~p!52&
b1~phS!

p~c1hS!S1~phS!
. (4)

To demonstrate the validity of the analytical solution, the n
mal tractionephNx1(p511 i ,hN51) is applied on the crack sur
faces. The stresss̃22(21,0,11 i ) and the displacementũ2(1,0,1
1 i ) computed are found as 0.198620.3095i , and 0. There are in
good agreement with the normal tractione212 i (50.1988
20.3096i ) at ~21, 0! and the displacementũ2(1,0,11 i )50 due
to symmetry.

3 Laplace Finite Element Formulation
As a complicated elastodynamic fracture problem is first tra

formed into an equivalent static fracture problem by the Lapl
transform technique, the finite element alternating procedure
veloped here is performed to obtain the solution of the equiva
static fracture problem using a successive, iterative superpos
of sequences of solution. The sequences of solutions are
structed by some simpler uncracked and cracked problems.
former uncracked solutions in the Laplace domain can be c
puted by the Laplace finite element model as stated below.
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latter cracked solutions can be determined by substituting the
ordinates of the same finite geometric boundary as the equiva
static fracture problems into the analytical solutions~1! and ~2!.
~The detailed procedures are referred to Chen and Chang@16#.!

Consider a real-time two-dimensional isotropic uncracked p
with prescribed tractiont̄ i(t) over the boundarySs and displace-
ment ūi(t) over the boundarySu . Neglecting the body force, the
functional which governs the elastodynamic response of the p
can be described by the Hamilton’s principle in finite eleme
approximation as

P~ui~ t !!5E
t1

t2

(
m F E

Am

S 1

2
Ei jkl e i j ~ t !ekl~ t !2

1

2
ru̇i~ t !u̇i~ t ! DdA

2E
Ssm

t̄ i~ t !ui~ t !dSGdt, (5)

whereAm is the area of elementm, Ssm
is the boundary of elemen

m where the tractiont̄ i(t) is prescribed, andEi jkl is the elastic
tensor.ui(t) and u̇i(t) denote the element interior displaceme
and velocity, respectively.e i j (t)51/2(ui , j (t)1uj ,i(t)) is the
strain tensor andr is the density of the isotropic material.

The element interior displacementui(t), velocity u̇i(t) and
strain e i j (t) can be approximated in terms of element nodal d
placementq(t) and velocityq̇(t) as ~in matrix form!

$ui%5@N#$q%, (6)

$u̇i%5@N#$q̇%, (7)

and

$e i j %5@B#$q%, (8)

where the matrix@B# is the spatial derivative of the interpolatio
function@N#. Substituting Eqs.~6!–~8! into Eq.~5!, following the
general finite element formulation procedures, the simultane
ordinary differential equations are obtained as

@M* #$q̈* ~ t !%1@K* #$q* ~ t !%5$F* ~ t !% , (9)

where

@M* #5(
m
E

Am

r@N#T@N#dA,

@K* #5(
m
E

Am

@B#T@Ei jkl #@B#dA

and

@F* ~ t !#5(
m
E

Ssm

@N#T$ t̄ i~ t !%dS.

$q* (t)% and$q̈* (t)% represent the global nodal displacement a
acceleration vectors.

To transform the simultaneous ordinary differential equatio
to a set of linear algebraic equations in Laplace domain, the o
sided Laplace transformf̃ (x1 ,x2 ,p) of a real-time response
f (x1 ,x2 ,t) is defined by

f̃ ~x1 ,x2 ,p!5E
0

`

f ~x1 ,x2 ,t !e2ptdt, (10)

wherep is the one-sided Laplace parameter, which is a comp
as mentioned in the previous section.

After taking the one-sided Laplace transform on Eq.~9! under
zero initial conditions$q* (0)%5$q̇* (0)%5$0%, Eq. ~9! becomes

@K* ~p!#$q̃* ~p!%5$F̃* ~p!%, (11)

where

@K* ~p!#5p2@M* #1@K* #
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and

@ F̃* ~p!#5(
m
E

Ssm

@N#T$ t̃̄ i~p!%dS.

By dividing the complex quantities of Eq.~11! into their real and
imaginary parts, a set of linear algebraic equations are forme

F @KR* ~p!# 2@K I* ~p!#

@K I* ~p!# @KR* ~p!#
G H $q̃R* ~p!%

$q̃I* ~p!%J 5H $F̃R* ~p!%

$F̃ I* ~p!%
J (12)

where

@K* ~p!#5@KR* ~p!#1 i @K I* ~p!#,

$q̃* ~p!%5$q̃R* ~p!%1 i $q̃I* ~p!%,

and

$F̃* ~p!%5$F̃R* ~p!%1 i $F̃ I* ~p!%.

The transformed displacement vectors$q̃R* (p)% and $q̃I* (p)%
can be evaluated numerically by the Gauss-Jordan method
sequence of selected Laplace parameterspk5v1wk(k
51,2, . . . ,N). Finally, the numerical inversion scheme to inver
the Laplace domain solutions for all the selected Laplace par
etersp to those of the real-time response at any specific ins
can be carried out by Honig and Hirdes@22#.

4 Laplace Finite Element Alternating Procedures
The Laplace finite element alternating method, which combi

the merits of the Laplace transform technique, finite element
ternating procedure, and the Laplace inversion algorithm, is es
lished to analyze the elastodynamic fracture problems with m
tiple cracks and explained here. Consider a two-dimensional fi
domain containing multiple cracks subjected to dynamic loadi
as shown in Fig. 2~a!. By the Laplace transform technique, th
complicated elastodynamic fracture problem is first transform
into an equivalent static fracture problem in the Laplace transfo
domain as shown in Fig. 2~b!. The finite element alternating
method can be used to obtain the solution of the Laplace tr
form domain equivalent static fracture problem using a succ
sive, iterative superposition of sequences of solutions. The
quences of solutions are constructed by some known sim
pplied Mechanics
as

or a

e
m-

ant

es
al-
tab-
ul-
ite
gs
e
ed
rm

ns-
es-
se-

pler

solutions of the problems with specific boundary condition
which are computed by a conventional finite element proced
and/or available analytical solution. Finally, the real-time r
sponse can be achieved by using the numerical Laplace inver
algorithm ~@22#!. For completeness, several main steps are sta
below:

1 For a selected instantt I , an optimal parameterv I can be
chosen by the method of Honig and Hirdes@22# ~see the Appen-
dix! and a sequence of Laplace parameterspk5v I1 ikp/t(k
51,2, . . . ,N) are determined.

2 For each of the Laplace parameterspk(k51,2, . . . ,N), the
governing equation~Eq. ~13!! and boundary conditions~see Fig.
2~b!! of the equivalent static fracture problem in the Lapla
transform domain are obtained.

3 Based on the finite element alternating procedure as
scribed in detail in Chen and Chang@16#, the Laplace transform
displacement, stress, and stress intensity factors for the sele
Laplace parameterpk are computed.

4 Once the Laplace transform domain solutions of all t
Laplace parameterspk are solved, the corresponding real-time r
sponse of the elastodynamic fracture problem at the selected
stantt I can then be obtained by Eq.~A4! as stated in the Appen
dix.

5 For the elastodynamic response of another instant, re
steps~1! to ~4!.

6 Repeat steps~1! to ~5! until the desired time history is per
formed.

It is worthwhile to mention that the choice of the sequence
the Laplace parameterspk depends on the selected instant on
Hence, the real-time response of any instant can be solved dire
without computing the response of other instants. For the sa
reason, the accuracy of the solutions obtained by the present
nique is independent of the size of the time increment taken.

5 Results and Discussions
To evaluate the accuracy and versatility of the Laplace fin

element alternating procedure developed, several elastodyn
fracture problems with multiple edge and central cracks un
transient loadings are analyzed. The phenomena of the oversh
of the dynamic stress intensity factors and the interactions of
stress waves between cracks and boundaries are also consid
SEPTEMBER 2000, Vol. 67 Õ 609
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Example 1: A Rectangular Plate With an Inclined Edge
Crack. A finite plate with an inclined edge crack under unifor
Heaviside tensionsN/m2 is first analyzed as shown in Fig. 3
Twenty-four eight-node isoparametric quadratic finite eleme
are taken in the Laplace transform domain. Since the equiva
static fracture problem is solved in the Laplace transform dom
the constraints of the size and shape of elements for elast
namic problem are not necessary. The problem was also stu
by Dominguze and Gallego@15# by a boundary element metho
with time incrementDt50.4ms. The material properties are
shear modulusm529.4 GPa, Poisson’s ration50.286, and den-
sity r52.453103 Kg/m3 and the longitudinal wave speedcp

54.603103 m/s. Figure 4 shows the variations of the mode I a
mode II dynamic stress intensity factors normalized bysApa.
Two different calculations by the time increments ofDt51 ms
~20 time increments! and Dt55 ms ~four time increments! are
made and both are in good agreement with the reference solu
It is noted that the dynamic stress intensity factors remain z
until the longitudinal wave arrives at the crack tip~;3.48ms!.

Example 2: A Rectangular Plate With Four Inclined Edge
Cracks. To estimate the interation effect among cracks and
finite geometrical boundaries on the dynamic stress intensity
tors, a plate containing four inclined edge cracks subjected
uniform time-dependent Heaviside loadings at the top and bot
surfaces is considered. The material properties are: the You
modulus is 68.95 GPa, the Poisson’s ratio is 0.333, the mass
sity is 2.763103 Kg/m3 and the longitudinal wave speedcp

56.123103 m/s. Due to symmetry, only one half of the proble
is solved as shown in Fig. 5. Forty-five Laplace eight-node i
parametric finite elements in a Laplace domain are used. The
malized dynamic stress intensity factors at crack tipsA andB with
changing distancese/L50.2, 0.4 and 0.6 are plotted in Figs. 6 an
7, respectively. It is noted that theP-wave from the loaded edg
that impinges on the crackA generates a reflected wave and
scattering wave so that the stress wave on crackB becomes more
complex. The times of arrival at crack tipsA andB of theP-wave

Fig. 3 A rectangular plate with an inclined edge crack under
uniform Heaviside loading
610 Õ Vol. 67, SEPTEMBER 2000
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generated by the loaded edges are at different times, and the
namic stress intensity factors of crackB are less than the values o
crackA due to the resistance of the stress wave by the crackA. It
also shows that the dynamic stress intensity factors of cracA
increase due to increasinge/L. The dynamic stress intensity fac

Fig. 4 The normalized dynamic stress intensity factors of the
problem with an inclined edge crack

Fig. 5 A rectangular plate with four inclined edge cracks un-
der a Heaviside loading
Transactions of the ASME



ack
ries
nly
ith

edge
atic
the

e of

e

nd

in a

the
e
ree

s, the
ctors

and
ay-

ess

tion
ken
tors of crackA are enhanced by the propagation and scattering
stress waves between boundaries of the plate and crackA.

Example 3: A Rectangular Plate With a Central Crack
Subjected to Heaviside Loading. To demonstrate the applica
bility of the present technique to the analysis of the symmetrica

Fig. 6 The mode I dynamic stress intensity factors of the four
inclined edge cracks for the cases of eÕLÄ0.2, 0.4, and 0.6

Fig. 7 The mode II dynamic stress intensity factors of the four
inclined edge cracks for the cases of eÕLÄ0.2, 0.4, and 0.6
Journal of Applied Mechanics
of

-
lly

distributed central cracks, a rectangular plate with a central cr
subjected to Heaviside loadings at the top and bottom bounda
of the plate as shown in Fig. 8 is analyzed. Due to symmetry, o
one quarter of the problem is solved. Hence, the problems w
symmetric central cracks can be treated as the problems with
cracks. Twenty-four Laplace eight-node isoparametric quadr
elements are used. The material properties are as follows:
shear modulusm576.9 GPa, the Poisson’s ratiov50.3, and the
density r55.3103 Kg/m3. In Fig. 9, the normalized dynamic
stress intensity factors for different crack lengthsa/W50.25, 0.5,
and 0.75 are plotted, and good agreement is found for the cas
a/W50.25 with available results obtained by Li@24# using the
Gurtin variational Principle. In Fig. 9, the symbolP1 denotes the
time required for the incidentP-wave from the loaded edges to th
crack tip, which can be computed asL/cp52.73ms. TheP1 value
of the present computed response is 2.60;2.65ms as compared
with 2.30ms obtained by Li@24#. R1 is the time required for the
first Rayleigh wave to arrive at the crack tip considered. (P1

s

2P1) and (S1
s2P1) mean the times of the scatteredP-wave and

S-wave to travel from the crack tip to the nearest boundary a
back. P2 is the time for the incidentP-wave reflected from the
opposite boundary surface, and return back to the crack.R2 , P2

s ,
andS2

s caused by the secondary excited wave are introduced
manner analogous toR1 , P1

s , andS1
s , respectively. The dynamic

stress intensity factors of the three cases remain zero until
P-wave has arrived (P1) from the loaded edges. Although th
peak values of the dynamic stress intensity factors of the th
cases take place at different times and possess different value
character is the same. That is, the dynamic stress intensity fa
reach a peak value higher than the corresponding static value
the peak value which happenes during the first and second R
leigh wave arriving the crack tip. The corresponding static str
intensity factors are 1.05, 1.20, and 1.62 for the cases ofa/W
50.25, 0.5, and 0.75, respectively. From the one-step solu
obtained, it is concluded that the size of the time increments ta

Fig. 8 The Laplace finite element mesh of the finite plate with
a central crack
SEPTEMBER 2000, Vol. 67 Õ 611
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in the present technique can be arbitrary. It is mentioned tha
seen in Fig. 9, some negative dynamic stress intensity factors
observed due to the lack of accounting for the dynamic contac
the crack surfaces. However, to the principal authors’ experie
~@13#!, as far as the peak dynamic stress intensity factors are
cerned, the mathematical crack surface interpenetration ca
ignored.

Example 4: A Rectangular Plate With Parallel Triple
Central Cracks. In order to estimate the wave propagatio
among cracks, a finite plate with parallel triple cracks subjecte
Heaviside loadings on the opposite sides of the plate as show
Fig. 10 is analyzed. Twenty-four Laplace eight-node isoparam
ric quadratic elements are used. The normalized dynamic s
intensity factors of the crack tipA for different distancese/L
50.1, 0.2, and 0.5 anda/W50.25 are plotted in Fig. 11. The
symbolst1 , t2 , andt3 on the time axis denote the different time
for the incidentP-wave arriving at the crack tipA from the loaded
edges for the casese/L50.5, 0.2, and 0.1, respectively. It is wort
noting that the crack tipA exists a mode II dynamic stress inte
sity factor due to the scatteredP-wave traveling from the crack tip
B, and the values are enhanced when the upper crack gets c
t4 , t5 , and t6 denote the time of arrival at the crack tipA of the
scatteredP-wave from the crack tipB of the casese/L50.1, 0.2,
and 0.5, respectively. In Fig. 12, the peak value of the normali
mode I dynamic stress intensity factors of the crack tipB increase
due to the increasing distancee. As the distancee is large enough,
the peak value of the normalized dynamic stress intensity fac
of B converges to the value of a single crack as shown in Fig
~for the case ofa/W50.25!. It is noted that the upper crack can b
considered as a barrier to reduce the dynamic stress intensity
tors of the middle crack. The CPU time for computing a sing
time instant by 586 PC~Pentium 200! is about 48.4 seconds.

Example 5: A Rectangular Plate With Different Distribu-
tions of Triple Cracks. Based on the previous example, obv
ously there exists an unexpected fracture mode due to the inte
tion of cracks. To further estimate the influence of differe
distributions of cracks on the dynamic stress intensity factors,
problems with different distributions of triple cracks subjected

Fig. 9 The normalized dynamic stress intensity factors of the
finite plate with a central crack for the cases of aÕWÄ0.25, 0.50,
and 0.75
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Heaviside loadings are analyzed. They include H-type~case~a!!
and collinear~case~b!! permutations of cracks. However, as se
in Fig. 13, the same Laplace eight-node isoparametric finite
ment mesh is used. The normalized mode I dynamic stress in
sity factors of the crack tipA for different permutations of cracks

Fig. 10 The Laplace finite element mesh of a finite plate with
parallel triple cracks

Fig. 11 The normalized dynamic stress intensity factors of
crack tip A of the finite plate with parallel triple cracks
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are compared in Fig. 14. The normalized mode I dynamic st
intensity factors of the crack 1 for the case~a! are consistent with
those of the case~b! until the time (t1) of arrival at the crack tip
A of the reflectedP-wave from crack 2. The peak value of th
crack tip A for the case~a! is lower than that of the case~b!
because the crack 2 resists the reflected waves from the
boundary. There are two unexpected fracture modes on the c
2 due to the scattered wave which arrived from the crack 1.
normalized dynamic stress intensity factors of the crack 2 as

Fig. 12 The normalized dynamic stress intensity factors of
crack tip B of the finite plate with parallel triple cracks

Fig. 13 The Laplace finite element mesh of the finite plate with
different permutation triple cracks
Journal of Applied Mechanics
ess

e

ight
rack
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as crack 3 are plotted in Fig. 15. The symbolst2 and t3 on the
time axis denote the time of the incidentP-wave to arrive at crack
tip C ~case~b!! and that of the scatteredP-wave from the crack tip
A to the crack tipB ~case~a!!, respectively. It is found that the
peak value of the normalized dynamic stress intensity factor
dependent on the plate configuration as well as crack permuta

Fig. 14 The normalized dynamic stress intensity factors of the
crack tip A for different permutation cracks

Fig. 15 The normalized dynamic stress intensity factors of the
crack tip B and C for different permutation cracks
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6 Conclusions and Recommendations
Based on the present Laplace finite element alternating pr

dures established, the calculation of the dynamic stress inten
factors in a finite plate with arbitrary number/distribution of ed
cracks or symmetrically distributed central cracks has been
cessfully performed with a limited number of regular elemen
The solution is independent of the size of the time increm
taken and one can even determine the dynamic stress inte
factors at any instant by a single time-step instead of step-by-
computations. The influences of the scattering waves on the
namic stress intensity factors for several representative exam
are studied in detail.

According to results obtained, it is found that the dynam
stress intensity factors computed exhibit the similar characte
tics. They remain zero until the time of arrival at the crack tip
the incident wave, and reach the peak values higher than the
responding static values, then fluctuate about the static values
a decreasing amplitude. In addition to the length, number,
distribution of cracks, the peak values of the dynamic stress
tensity factors are also dependent on the finite geometric bo
aries significantly. They may exist an unexpected fracture m
due to the complicated wave propagation.

To widen the applicability of the technique, once an analyti
solution for an infinite plate with a central crack subjected
arbitrarily distributed loading on the crack surfaces in the Lapl
domain is achieved, an extension to arbitrarily distributed cen
cracks would be recommended. Moreover, this technique ca
extended to the possible application to the NDT technique to
dict the presence, length, position, and orientation of cracks
studying the wave patterns in cracked bodies.
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Appendix

Numerical Laplace Inversion Algorithm. In many engi-
neering applications, the Laplace transform domain response
too difficult to be inverted analytically. There are many numeri
Laplace inversion algorithms which have been developed. An
curate and efficient method proposed by Honig and Hirdes@22#,
which is based on the Fourier series expansion developed by
bine @25#, can efficiently compute the result at a selected inst
by the optimal value of the parameterv, say, the real part of the
Laplace parameterspk5v1 iwk(k51,2, . . . ,N).

The Laplace inversion formula for a functionf (t) whose trans-
form is f̃ (p) can be established by both finite Fourier cosine a
sine transforms as follows:

f ~ t !5
evt

t H 2
1

2
Re$ f̃ ~v !%1(

k50

N

@Re$ f̃ ~pk!%coswkt

2Im$ f̃ ~pk!%sinwkt#J 2Fd~v,t,t!1Ft~N,v,t,t!

for 0,t,2t (A1)

wheret is the half period off (t) andwk5kp/t. The discretiza-
tion errorFd(v,t,t) and truncation errorFt(N,v,t,t) are given as

Fd~v,t,t!5(
k51

`

e22kvt f ~2kt1t ! (A2)

and
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Ft~N,v,t,t!5
evt

t F (
k5N11

`

$Re$ f̃ ~pk!%coswkt

2Im$ f̃ ~pk!%sinwkt%G . (A3)

Hence, the approximate valuef N(t) becomes

f N~ t !5
evt

t F2
1

2
Re$ f̃ ~v !%1(

k50

N

@Re$ f̃ ~pk!%coswkt

2Im$ f̃ ~pk!%sinwkt#. (A4)

The discretization errorFd(v,t,t) as shown in Eq.~A2! can be
made arbitrarily small if the productvt is sufficiently large. How-
ever, the truncation errorFt(N,v,t,t) as seen in Eq.~A3! may be
divergent for a largevt. An appropriate choice of parameterN
andvt is very important not only for the accuracy but also for t
convergent rate of an inverted solution. The Honing method
lows a reduction of the discretization error without enlarging t
truncation error by an optimal choice of the parameterv. There
are two methods proposed to determine the optimalv for a fixed
N andt. The methodA is to make the absolute values of discre
zation errorFd(v,t,t) and truncation errorFt(N,v,t,t) equal.
The methodB is to make the sum of the absolute values of d
cretization and truncation error minimal. Further, according to
numerical experiments of this work, sufficient accuracy can
achieved at any time instant asN560;100 for an optimal choice
of the parameterv.
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The Top With a Blunted Vertex
Slipping With Light Friction
at a High Rate of Spin

P. C. Paris, L. Zhang, and H. Tada
School of Engineering and Applied Science, Washingto
University, St. Louis, MO 63130-4899

The problem of determining the motion of a top is a classic
ample of a complex analysis in analytical dynamics. Adding
blunt tip to the top and setting it spinning on a surface w
sliding friction might be thought to render it intractable for simp
analysis. However, if it is set in motion with a high rate of spin
is possible to find a simple approximate solution for the case
approximate steady precession. For this pseudo-steady moti
will be noted that the rate of diminution of the nutation will als
be almost constant. Further, the ratio of these rates (latter o
former) will be equal to the negative of the coefficient of fricti
for the top slipping on the surface. As a consequence the m
center of the top will tend to proceed around a steady circle ab
the plane. These results will first be observed by writing the
Lagrange’s equations for the problem and reducing them prior
integration by observing appropriate approximations by delet
relatively smaller terms. The above results will then follow
rectly. Further, the full Lagrange’s equations will be numerica
integrated to show that the analytically developed approxim
results are appropriate. Once these results are known, it is
served that a subsequent intuitive analysis based on time rat
change of angular momentum leads to the same results, if only
angular momentum about the spin axis is considered with o
relevant assumptions.@S0021-8936~00!00203-8#

The motion of a top with a slightly blunted vertex in conta
with a horizontal surface with continuous frictional slipping d
to a high rate of axial rotation, compared to precession and n
tion rates, is a tractable problem. There are few examples w
frictional slipping allows a direct solution for the main behavi
with the use of Lagrange’s equations. This example is offe
here to encourage attempts of analysis of such problems, w
might look implausible at first glance, but which yield a solutio

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Divisio
Aug. 17, 1999; final revision, Dec. 5, 1999. Associate Technical Editor: N.
Perkins.
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upon careful consideration. Such a top is shown in Fig. 1, wit
truncated vertex of radius,a. The top is assumed to be axiall
symmetric with axial and transverse centroidal moments of in
tia, I A andI T , respectively. The stem length,l, of the top from the
centroid to the truncated vertex is assumed to be large comp
to the vertex radius,a. It is further assumed that the top is spin
ning rapidly enough that the friction force,F, will be perpendicu-
lar to the axis of the top. The position of the point directly belo
the mass center is denoted,Y, Z, and the contact point is a dis
tance,d, away. This distance and the height,h, of the mass center
above the plane of contact are

d5 l sinu2a cosu
(1)

h5 l cosu1a sinu.

Taking the differential of the latter expression gives

dh52 l ~sinu!du1a~cosu!du or ḣ52 l u̇ sinu1au̇ cosu.

The other two perpendicular components of velocity of t
mass center areẎ and Ż. The angular velocity components o
the body may be expressed as~with the y-axis remaining
horizontal!

vx5ċ1ḟ cosu

vy5 u̇ (2)

vz5ḟ sinu.

The kinetic energy may then be written in the form

T5
1

2
m@~2 l sinu1a cosu!2u̇21Ẏ21Ż2#

1
I A

2
~ ċ1ḟ cosu!21

I T

2
~ u̇21ḟ2 sin2 u!. (3)

The generalized forces, from the work rates of ind
pendent instantaneous variations of each coordinate, are fo
to be

Qu5
2mgdh

du
51mg~ l sinu2a cosu!

Qf5
Fddf

df
5mmg~ l sinu2a cosu!

Qc5
2Fadc

dc
52mmga (4)

,
C.
© 2000 by ASME Transactions of the ASME
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QY5
FYdY

dY
52mmgsinf

QZ5
FZdZ

dZ
5mmgcosf

assuming the vertical acceleration is very small andm is the fric-
tion coefficient. From these forms, Eqs.~3! and ~4!, the ingredi-
ents for the basic form of the Lagrange’s equations are avail
and may be employed. Recall that this form of Lagrange’s eq
tions is ~@1#!

d

dt S ]T

]q̇r
D2

]T

]qr
5Qr for ~qr5u,f,c,Y,Z!. (5)

The five resulting Lagrange’s equations follow:

d

dt
@ I Tu̇1m~2 l sinu1a cosu!2u̇ #1I A~ ċ1ḟ cosu!ḟ sinu

2I Tḟ2 sinu cosu1m~2 l sinu1a cosu!

3~ l cosu1a sinu!u̇25mg~ l sinu2a cosu! (6a)

d

dt
@ I A~ ċ1ḟ cosu!cosu1I Tḟ sin2 u#5mmg~ l sinu2a cosu!

(6b)

d

dt
@ I A~ ċ1ḟ cosu!#52mmga (6c)

d

dt
@mẎ#52mmgsinf (6d)

d

dt
@mŻ#5mmgcosf. (6e)

Now these equations of motion appear to be quite formidable,
not at all attractive for solution. However, it is observed from t
motion of tops that if a high spin rate,ċ>Vo , is induced initially,
then by comparison the precession and nutation rates,ḟ and u̇,
will be relatively small. That is

ċ>Vo..ḟ,u̇.

In addition it is noted that

l ..a.

Armed with these relative sizes, Eqs.~6! may be reconsidered
Notice that the first three equations of motion 6(a), 6(b), and
6(c) do not involveY or Z and stand separately for the solution f

Fig. 1
Journal of Applied Mechanics
ble
ua-

and
e

r

u,f,c as functions of time. Once that is done 6(d) and 6(e) are
easy to attack. Consider first the second equation, 6(b), in light of
the above inequalities, and it becomes

d

dt
@ I AVo cosu#>mmgl sinu.

Differentiating as indicated and canceling sinu gives

I AV0u̇52mmgl. (7)

Integrating this expression gives

u5uo2
mmgl

I AVo
t. (8)

Equation ~8! shows that, starting from its initial valueuo , u
will diminish approximately linearly with time until the top
is standing straight up. The predicted time for this behavior fr
Eq. ~8! is

tF5
I aVouo

mmgl
. (9)

Substituting this approximately constant value ofu̇ from Eq. ~7!
into the first full equation of motion,~1!, and also neglecting
terms which are relatively small according to the above inequ
ties leads to

ḟ>
mgl

I AVo
. (10)

As observed from Eqs.~7! and ~10!, the precession and nutatio
rates obey the simple relation:

u̇>2mḟ. (11)

It is further noticed that the radius of the blunt vertex is not fou
in these relationships. This fact implies that an arbitrarily round
vertex will have the same effects as long as the coefficien

Fig. 2
SEPTEMBER 2000, Vol. 67 Õ 617
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friction, m, remains relatively constant and slip continues to oc
as the motion progresses. Indeed tops generally exhibit this
havior pattern for high rates of spin! Further putting these res
into the last two equations of motion,~4! and~5!, implies that the
vertical projection of the mass center on theY-Z plane will de-
scribe a circle.

Numerical Verification of Results
The full Lagrange’s equations,~6!, were programmed into Mat

lab without consideration of the inequalities following Eqs.~6!.
Numerical evaluation of the coordinates as functions of time fo
typically proportioned top were then performed, where initial co
ditions for u̇ andḟ were chosen as proportionally related bym in
the approximate results~Eq. ~8!!. Figure 2 shows that the behavio
with time is closely predicted by the approximate solution~Eqs.
~7!–~11!!. These results strongly support the concept that appr
mate solutions may be developed from rather difficult looki
Lagrange’s equations~in this case five nonlinear coupled secon
order differential equations! to give simple and relevant results fo
certain physical systems.

Physical Intuitive Method of Analysis
Once the approximate solution is known or observed, it s

gests that perhaps a simpler solution may be gained by met
less complex than the full Lagrangian method. Indeed, rephra
the problem in terms of time rates of changes of momenta~@2#!, is
a possible approach. In order to do that in a reasonably sim
way, it is first important to observe that the angular moment
about the spin axis~x-axis! is assumed to be very large compar
to those about the other principal axes of the body. Neglec
those smaller angular momenta leads to

@H#>Hx5I A~ ċ1ḟ cosu!>I AV. (12)

Equating the applied moments about each of the axes to the
rates of change of this approximate angular momentum, Eq.~12!,
due to the angular rates,u̇, ḟ, andV̇, leads to

Mz5Ḣz>2I AVu̇>mmgl

M y5Ḣy>I A V sinuḟ>mgl sinu (13)

Mx5Ḣx>I AV̇52mmga.

Note that in the far right-hand terms of Eqs.~13! additional terms
of the order ofa as compared tol have also been neglected. No
it is seen that these results lead directly to Eqs.~7!–~11! without
having to write and reduce the original Lagrange’s equatio
However, it is doubted that one would find or have confidence
the correctness of this more intuitive method without already h
ing known that a simple solution is possible as demonstrated
the Lagrangian method.
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Nonsingular Boundary Integral
Equations for Two-Dimensional
Anisotropic Elasticity

K.-C. Wu
Professor, Institute of Applied Mechanics, National
Taiwan University, Taipei, Taiwan, R.O.C.

Nonsingular boundary integral equations for two-dimensional a
isotropic elasticity problems are developed. The integral eq
tions can be solved numerically by Gaussian quadratures. A
merical example is given to illustrate the effectiveness of
integral equations.@S0021-8936~00!00303-2#

1 Introduction
The currently popular boundary element method is based

displacement boundary integral equations in linear elastic s
mechanics. The strain field is computed by differentiating the d
placements analytically and the stresses are obtained from
strains through Hooke’s law. This method works well in the in
rior of the body, but at the boundary it gives rise to hypersingu
integrals which cannot be evaluated accurately without spe
treatment. For two-dimensional problems, Wu et al.@1# proposed
a new formulation of boundary integral equations using Stro
formalism for anisotropic elasticity~@2#!. The new formulation is
expressed in terms of the tractions and displacement gradie
which can be used to calculate the boundary stresses or st
directly.

The formulation of Wu et al. provides dual sets of bounda
integral equations that are linearly dependent. In principle eit
set can be used for numerical implementation. Both sets, howe
contain singular integrals of Cauchy’s type so that principal v
ues must be evaluated. In this paper, the sets of boundary inte
equations are transformed such that the integrals associated
the unknown boundary data are regularized. The transformatio
done by employing certain eigenrelations in Stroh’s formalis
The integral equations can be solved using Gaussian-type inte
tion formulas directly without dividing the boundary into discre
elements. This is particularly useful for problems with infini
boundaries. An example of an infinite anisotropic plate subjec
to collinear compressive line forces is provided to illustrate
effectiveness of the numerical scheme.

2 Nonsingular Boundary Integral Equations
For two-dimensional anisotropic elasticity problems, Wu et

@1# derived the following dual sets of boundary integral equatio

1

2
d~x!5E

C
@2Ŵ~x,x8; x̂C!d~x8!1Û~x,x8; x̂C!t~x8!#ds8, (1)

1

2
t~x!5E

C
@V̂~x,x8; x̂C!d~x8!2Ŵ~x,x8; x̂C!Tt~x8!#ds8, (2)

whereC is a smooth contour parametrized by the arc lengths, d
5]u/]s is the gradient of the displacementu, t is the traction on
C, x(s)5(x1(s),x2(s)) is a generic point onC, x̂C5( x̂1(s),
x̂2(s))5]x(s)/]s is the unit vector tangent toC at x,x8 is an
integration point, and

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
15, 1999; final revision Jan. 14, 2000. Associate Technical Editor: J. R. Barber
© 2000 by ASME Transactions of the ASME
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Ŵ~x,x8; x̂C!52
1

p
ImFAK ẑ* ~s!

z
*
8 ~s8!2z* ~s!L BTG , (3)

Û~x,x8; x̂C!52
1

p
ImFAK ẑ* ~s!

z
*
8 ~s8!2z* ~s!L ATG , (4)

V̂~x,x8; x̂C!52
1

p
ImFBK ẑ* ~s!

z
*
8 ~s8!2z* ~s!L BTG . (5)

The direction of increasings is such that when describing a circu
around the contour, the domain of interest is to the left. In E
~3!, ~4!, and ~5!, Im denotes the imaginary part,A5(a1 ,a2 ,a3),
B5(b1 ,b2 ,b3), and ^ẑ* (s)/z

*
8 (s8)2z* (s)& represents the diag

onal matrix given by

K ẑ* ~s!

z
*
8 ~s8!2z* ~s!L

5S ẑ1~s!

z18~s8!2z1~s!
0 0

0
ẑ2~s!

x28~s8!2z2~s!
0

0 0
ẑ3~s!

z38~s8!2z3~s!

D
with zk(s)5x1(s)1pkx2(s) and ẑk(s)5]zk(s)/]s5 x̂1(s)
1pkx̂2(s), k51,2,3, and Im@pk#.0. The complex vectorsak ,bk
and scalarspk are determined by the following eigenvalue pro
lem:

S N1 N1

N3 N1
TD S ak

bk
D5pkS ak

bk
D (6)

where

N152T21RT, N25T21, N15RT21RT2Q,

Qik5Ci1k1 , Rik5Ci1k2 , Tik5Ci2k2

and Ci jkl is the elasticity tensor. Equations~1! and ~2! are not
independent. In principle, either set of equations can be use
solve for either the unknown boundary displacement gradient
the tractions from the special field boundary data. Once the
known boundary quantities are determined, the boundary stre
and strains can be calculated directly fromd and t by Hooke’s
law. The displacement gradients along an arbitrary directionx̂G
and the tractions based on the normal obtained by rotatingx̂G by
p/2 clockwise at a generic pointx in the body can be evaluated b

d~x; x̂G!5E
C

@2Ŵ~x8,x; x̂G!d~x8!1Û~x8,x; x̂G!t~x8!#ds8,

(7)

t~x; x̂G!5E
C

@V̂~x8,x; x̂G!d~x8!2Ŵ~x8,x; x̂G!Tt~x8!#ds8.

(8)

Either Eq.~1! or Eq.~2! contains singular integrals related tod as
well as t. This fact precludes the direct use of many conveni
numerical integration schemes such as Gaussian quadratur
seeking numerical solutions.

We can transform Eqs.~1! and~2! into expressions that involve
singular integrals of eitherd or t only. The transformation is base
on the following identity~@3#!:

S S H

2L STD S A
BD5 i S A

BD , (9)

whereS, H, andL are the Barnett-Lothe tensors~@4#! defined as

S5 i ~2ABT2I !, H52iAAT, L522iBBT. (10)
Journal of Applied Mechanics
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Here i 5A21, and I is the identity matrix. The Barnett-Lothe
tensors are real. Moreover,H andL are symmetric and positive
definite. With Eqs.~9!, Eqs.~1! and ~2! can be combined to give

1

2
@Sd~x!2Ht ~x!#5E

C
~2Ŵ* ~x,x8; x̂C!d~x8!

1Û* ~x,x8; x̂C!t~x8!!ds8, (11)

1

2
@Ld ~x!1STt~x!#5E

C
~2V̂* ~x,x8; x̂C!d~x8!

2Ŵ* ~x,x8; x̂C!Tt~x8!!ds8, (12)

where

Ŵ* ~x,x8; x̂C!52
1

p
ReFAK ẑ* ~s!

z
*
8 ~s8!2z* ~s!L BTG , (13)

Û* ~x,x8; x̂C!52
1

p
ReFAK ẑ* ~s!

z
*
8 ~s8!2z* ~s!L ATG , (14)

V̂* ~x,x8; x̂C!52
1

p
ReFBK ẑ* ~s!

z
*
8 ~s8!2z* ~s!L BTG , (15)

and Re denotes the real part. By expressingz
*
8 (s8) as a Taylor’s

series abouts85s, it can be shown that ass8→s,

lim
s8→s

ẑ*
z
*
8 2z*

5
1

~s82s!
2

1

2z#*

]2z*
]s2 . (16)

Substitution of Eq.~16! into Eqs.~13!, ~14!, and~15! yields

lim
x8→x

Ŵ* ~x,x8; x̂C!52
1

2p~s82s!
I , (17)

lim
x8→x

Û* ~x,x8; x̂C!5
1

2p
ReFAK 1

ẑ* ~s!

]2z* ~s!

]s2 L ATG , (18)

lim
x8→x

V̂* ~x,x8; x̂C!5
1

2p
ReFBK 1

ẑ* ~s!

]2z* ~s!

]s2 L BTG , (19)

where Eq.~10! has been used. Equations~18! and ~19! clearly
show thatÛ* (x,x; x̂C) and V̂* (x,x8; x̂C) are nonsingular ats8
5s. For the displacement problem whered is specified at the
boundary, Eq.~11! is a set of nonsingular integral equations fort.
On the other hand, for the traction problem wheret is specified on
the boundary, Eq.~12! is a set of nonsingular integral equation
for d.

3 Numerical Example
As an illustration, Eq.~12! is applied numerically to solve the

problem of an infinite plate subjected to a pair of collinear co
pressive line forces as shown in Fig. 1. The (x1 ,x3) plane is taken

Fig. 1 An infinite plate subjected to a pair of collinear com-
pressive line forces
SEPTEMBER 2000, Vol. 67 Õ 619
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to coincide with the midplane of the plate. The top and bott
surfaces are atx25h/2 andx252h/2, respectively,h being the
thickness of the plate. The compressive forcesF5Fe2 and 2F
are applied, respectively, aty(1)5(0,2h/2) and y(2)5(0,h/2),
wheree2 is the unit vector in thex2-direction. This problem has
been studied using integral transform techniques by Filon@5# for
isotropic materials and by Chiu and Wu@6# for anisotropic mate-
rials.

For the problem considered, Eq.~12! becomes

1

2
@Ld ~x~1!!1d~x1!d~x21h/2!STF#

52
1

2px1
F1Ŵ* ~x~1!,y~2!;e1!TF

1E
2`

`

V̂* ~x~1!,x~2!8;e1!d~x~2!8!dx18 (20)

1

2
@Ld ~x~2!!2d~x1!d~x22h/2!STF#

52
1

2px1
F1Ŵ* ~x~2!,y~1!;e1!TF

2E
2`

`

V̂* ~x~2!,x~1!8;e1!d~x~1!8!dx18 (21)

whered(x1) is the Dirac delta distribution,e1 is the unit vector in
the x1 direction, x(1)5x1e12h/2e2 and x(2)5x1e11h/2e2 . To
avoid appearance ofd(x1) in Eqs. ~20! and ~21!, we introduce
q(x) defined as

q~x~1!!5d~x~1!!1d~x1!d~x21h/2!L21STF, (22)

q~x~2!!5d~x~2!!2d~x1!d~x22h/2!L21STF. (23)

Equations~20! and~21! can then be expressed in terms ofq(x) as

1

2
Lq ~x~1!!5f~x~1!,y~2!!1E

2`

`

V̂* ~x~1!,x~2!8;e1!q~x~2!8!dx18 ,

(24)

1

2
Lq ~x~2!!5f~x~2!,y~1!!2E

2`

`

V̂* ~x~2!,x~1!8;e1!q~x~1!8!dx18

(25)

where

f~x,y!52
1

2px1
F1Ŵ* ~x,y;e1!TF1V̂* ~x,y;e1!L21STF.

Table 1 s̄22ÄÀph s22Õ4F as a function of x̄ 1Ä2x 1 Õh for n
Ä6, 12, 18 by the present method and by the integral transform
method

x̄1 n56 n512 n518 Ref.@6#

0 1.3932 1.3990 1.3990 1.3947
0.2 1.2444 1.2397 1.2397 1.2403
0.4 0.8997 0.8961 0.8960 0.8985
0.6 0.5521 0.5670 0.5670 0.5646
0.8 0.3112 0.3285 0.3292 0.3292
1.0 0.1722 0.1782 0.1776 0.1791
1.2 0.0941 0.0885 0.0869 0.0860
1.4 0.0460 0.0354 0.0352 0.0347
1.6 0.0136 0.0067 0.0076 0.0086
1.8 20.0063 20.0066 20.0064 20.0065
2.0 20.0144 20.0122 20.0125 20.0135
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m In solving Eqs.~24! and~25!, it is expedient to make a chang
of variablex5tan(pf/2) so that the range of integrations is fro
21 to 1. The transformed integrals in terms off can be approxi-
mated by the Gaussian integration formula

E
21

1

f ~f!df.(
j 51

n

wj f ~f j !

wheref j and wj are, respectively, the integration point and t
corresponding weight andn is the number of integration points. A
system of algebraic equations can be obtained by enforcing
~24! and ~25! at x(a)(f i), a51,2 andi 51,2 . . .n. The result is

1

2
Lq i

~1!2(
j 51

n

Ci j
~12!qj

~2!5f i
~1! , (26)

(
j 51

n

Ci j
~21!qj

~1!1
1

2
Lq i

~2!5f i
~2! (27)

where

qi
~a!5q~x~a!~f i !!, f i

~a!5f~x~a!~f i !,y
~32a!!,

Ci j
~ab!5

pwj

2 cos2~pf j /2!
V̂* ~x~a!~f i !,x

~b!~f j !;e1!, b532a.

Onceqi
(a) are solved from Eqs.~24! and ~25!, d(x(a)(f i)) can

be determined by Eqs.~22! and~23!. The stresses in the plate ca
be calculated using Eq.~8! with the Gaussian integration formula
In particular, the stresss22 at x250 was computed for a vinyl
ester reinforced by unidirectional glass fibers with the followi
properties:

E1524.4 GPa, E256.89 GPa,

G1252.85 GPa, n125n125.325.

Table 1 displays the result ofs̄2252phs22/4F as a function of
x̄152x1 /h for n56, 12, and 18. For comparison purposes, t
values obtained using the integral transform method~@6#! are also
shown. For a fixed value ofx̄1 , the value ofs̄22 converges very
rapidly with increasingn. Indeed the values forn512 are essen-
tially the same as those forn518, which are in close agreemen
with the results obtained using the integral transform method.
result is quite satisfactory even forn56.

4 Conclusion
Nonsingular boundary integral equations for two-dimensio

anisotropic elasticity have been developed. The integral equat
can be treated numerically using Gaussian quadratures rather
by dividing the boundary into discrete elements. This is especi
convenient for problems with infinite boundaries. An example
an infinite plate subjected to a pair of compressive forces is gi
to illustrate the effectiveness of the numerical scheme. It is sho
that very accurate results could be obtained with few integra
points.
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The Nonlinear Response of a Simply
Supported Rectangular Metallic
Plate to Transverse Harmonic
Excitation

O. Elbeyli and G. Anlas
Department of Mechanical Engineering, Bogazici
University, 80815 Bebek, Istanbul, Turkey

In this study, the nonlinear response of a simply supported me
lic rectangular plate subject to transverse harmonic excitations
analyzed using the method of multiple scales. Stability of s
tions, critical points, types of bifurcations in the presence o
one-to-one internal resonance, together with primary resonan
are determined.@S0021-8936~00!00603-6#

Introduction
In an early work, the nonlinear response of a metallic squ

plate was investigated by Chu and Herrmann@1# who used Von
Karman strains, and obtained the in-plane deformation fields
double Fourier series. Later, Yang and Sethna studied nonli
vibrations of near square metallic plates subjected to param
~@2#!, and external~@3#! excitations in the presence of a one-to-o
internal resonance. They studied the interaction of two antis
metric modes. Chang et al.@4# analyzed the nonlinear vibration o
rectangular plates in the presence of a one-to-one internal r
nance. They used the method of averaging starting from the e
tions of motion that are in terms of transverse deflection and st
function.

In this study, the nonlinear response of a simply supported
tallic rectangular plate subject to transverse harmonic excitat
is analyzed using the method of multiple scales. For a rectang
metallic plate, antisymmetric modes cannot be forced to have
same natural frequencies unlike the case of a square plate~@3#!. As
a result, two arbitrary modes represented by modal amplitu
Tmn andTrs with same natural frequencies are studied wherem, n,
r, and s are the mode numbers. Stability of solutions, critic
points, types of bifurcations in the presence of a one-to-one in
nal resonance together with primary resonance are determine
contrast to the study of Yang and Sethna@2#, the parameters use
in this analysis are closely related to physical quantities. To m
sure the nearness of the frequencies of the two interacting mo
one of the system parameters is assigned to tune the aspect ra
the rectangular plate. In-plane stretching forces that are use
Chang et al.@4# are not present here. The geometry of the probl
and the loading are shown in Fig. 1.

Plate Equations

Using «5h2/a2 as a small dimensionless parameter andx
5x0 /a, y5y0 /b, z5z0 /a, u5u0 /«2a, v5v0 /«2a, w

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
24, 1999; final revision, May 2, 2000. Associate Technical Editor: A. A. Ferri.
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5w0 /«a, l25k1«g/2, c̄5cpc«2r/), and F512a(1
2n2)F̄/«3Eh with l5a/b, the nondimensional equations of mo
tion in x, y, andz-directions are obtained~@5#!:

]2u

]x2 1
]w

]x

]2w

]x2 1~11n!/2S a

b

]2v
]x]y

1
a2

b2

]w

]y

]2w

]x]yD
1~12n!/2S a2

b2

]2u

]y2 1
a2

b2

]w

]x

]2w

]y2 D5ü
«

12
, (1)

]2v
]y2 1

a

b

]w

]y

]2w

]y2 1~11n!/2S b

a

]u

]x]y
1

b

a

]w

]x

]2w

]x]yD
1~12n!/2S b2

a2

]2v
]x2 1

b

a

]w

]y

]2w

]x2 D5 v̈
«

12

b2

a2 , (2)

]4w

]x4 12k
]4w

]x2]y2 1k2
]4w

]y4 1
]2w

]t82 1«H 2c
]w

]t8
1kg

]4w

]x2]y2

1kg
]4w

]y4 212
]u

]x

]2w

]x2 26S ]w

]x D 2 ]2w

]x2

212nS a

b

]v
]y

]2w

]x2 1
1

2
kS ]w

]y D 2 ]2w

]x2 D212
a

b
k

]v
]y

]2w

]y2

26k2S ]w

]y D 2 ]2w

]y2 212nS k
]u

]x

]2w

]y2 1
1

2
kS ]w

]x D 2 ]2w

]y2 D
212~12n!S k

]u

]y

]2w

]x]y
1

a

b

]v
]x

]2w

]x]y
1k

]w

]x

]w

]y

]2w

]x]yD J
5«F~x,y,t !1O~«2!. (3)

Note thata andb are the dimensions of the plate,h is the thick-
ness,u0 , v0 , andw0 are the midplane displacements in thex, y
and z-directions, respectively,r is the density,E is the elastic
modulus,n is Poisson’s ratio,F̄ is the external force per unit area
c̄ is the transverse viscous damping per unit area,c is the dimen-
sionless damping coefficient, andk5a2/b2 and cp

25E/r(1
2n2). Parameters related to plate geometry are shown in Fig
Dots indicate differentiation with respect to dimensionless timt
5A«/12cp /at8.

The plate is simply supported on all four sides and the non
mensional boundary conditions are

at x50,1: w5
]2w

]x2 5u50, at y50,1: w5
]2w

]y2 5v50.

(4)

Note that in the case of Chang et al.@4#, the boundary conditions
are satisfied on the average.

Solution. It is assumed that two modes are interacting w
each other through a one-to-one internal resonance. Because
is damping, the modes that are not excited directly by an exte
excitation or through an internal resonance will die out in a fin
time, and only two modes will dominate the transverse motion
the plate. As a resultw may be expressed as follows:

w~x,y,t !5Tmn~ t !sin~mpx!sin~npy!

1Trs~ t !sin~rpx!sin~spy!1O~«!. (5)

The termsTmn(t) andTrs(t) represent the time-dependent mod
amplitudes of the two interacting modes. The above transve
motion assumption is more general than the one assumed by Y
and Sethna@2,3# who used antisymmetric modesTmn andTnm .

The right hand sides of Eqs.~1! and ~2! can be neglected be
cause it is assumed that in-plane displacements are small as
pared to the out-of-plane displacement. The left-hand sides
Eqs.~1! and~2! do not contain nonlinear terms inu andv. There-
fore, after substituting Eq.~5! into ~1! and ~2!, u and v can be

b.
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Fig. 1 The geometry of the problem
c

e

calculated by expressing them as linear combinations ofsine
terms and using the method of undetermined coefficients. Onu
andv are calculated, substituting them andw into Eq. ~3!, multi-
plying by sin(mpx)sin(npy) and by sin(rpx)sin(spy), and integrat-
ing over the plate, the governing equation in the2z direction will
yield the following equations in terms ofTmn andTrs :

d2Tmn

dt2
12c«

dTmn

dt
1v1

2Tmn1~k21!«gm2n2p4Tmn

1«BTmnTrs
2 1«DTmn

3 5«F1 , (6)

d2Trs

dt2
12c«

dTrs

dt
1v2

2Trs1~k21!«gs2r 2p4Trs

1«HTrsTmn
2 1«GTrs

3 5«F2 , (7)

where the natural frequenciesv1 and v2 of the two interacting
modes are

v15S m21S k1
«g

2 Dn2Dp2 and v25S r 21S k1
«g

2 D s2Dp2.

(8)
MBER 2000
e
B, D, G, and H are constants involvingm, n, r , s and geo-
metric and material properties of the plate, and@F1 ;F2#
5*0

1*0
1F(x,y,t)@sin(mpx)sin(npy); sin(rpx)sin(spy)#dxdy1O(«2)

~@5#!. It turns out that in the case analyzed hereB5H, and D
5G. The modal amplitudes are governed by nonlinear Eqs.~6!
and~7!, they are solved using the method of multiple scales~@6#!.
To determine a first-order approximation,Tmn and Trs can be
expressed in the following form:

Tmn~ t,«!5X0~T0 ,T1!1«X1~T0 ,T1!1O~«2! (9)

Trs~ t,«!5Y0~T0 ,T1!1«Y1~T0 ,T1!1O~«2! (10)

where Ti5« i t are the time scales and« is a small parameter
introduced earlier. Substituting~9! and ~10! into ~6! and ~7!, and
collecting coefficients of like powers of« we get differential equa-
tions governingX0 , X1 , Y0 , and Y1 . The equations from«1

order, governingX1 andY1 are as follows, where primes indicat
derivatives with respect to time scaleT1 and V is the external
excitation frequency:
]2X1

]T0
2 1v1

2X15
1

2
eiVT0F11

1

2
e2 iVT0F12Axgkm2n2p4eiv1T01Axgn2m2p4eiv1T022iAxv1ceiv1T02Āxgkm2n2p4e2 iv1T0

1Āxgm2n2p4e2 iv1T012iĀxv1ce2 iv1T023Ax
2ĀxDeiv1T023AxĀx

2De2 iv1T02DĀx
3e23iv1T012iĀx8v1e2 iv1T0

22iAx8v1eiv1T02BĀxAy
2ei ~2v22v1!T02BAxĀy

2ei ~v122v2!T02BAxAy
2ei ~2v122v2!T022BAxAyĀye

iv1T0

22BĀxAyĀye
2 iv1T02DAx

3e3iv1T02BAxAy
2ei ~v112v2!T0 (11)

and

]2Y1

]T0
2 1v2

2Y15
1

2
eiVT0F21

1

2
e2 iVT0F22Aygkr2s2p4eiv2T01Aygr 2s2p4eiv2T022iAyv2ceiv2T02DAy

3e3iv2T02Āygkr2s2p4e2 iv2T0

1Āygr 2s2p4e2 iv2T012iĀyv2ce2 iv2T023Ay
2ĀyDeiv2T02DĀy

3e23iv2T012iĀy8v2e2 iv2T022iAy8v2eiv2T0

2BĀyAx
2ei ~2v12v2!T02BAyĀx

2ei ~v222v1!T02BAyAx
2ei ~2v11v2!T02BAyAx

2ei ~22v12v2!T022BAyAxĀxe
iv2T0

22BĀyAxĀxe
2 iv2T023AyĀy

2De2 iv2T0. (12)
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Fig. 2 External resonance detuning parameter, s versus the first-mode amplitude a1 , in the presence of one-to-one internal
resonance. aÄ0.5, bÄ1, mÄ1, nÄ8, sÄ2, rÄ4, kÄ1Õ4, gÄ0.0005, and cÄ0.03, BÄ13571.6, DÄ37281.6, F2Ä0, v1,2Ä167.78.
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Fig. 3 External resonance detuning parameter, s versus the second-mode amplitude a2 , in the presence of one-to-one internal
resonance. aÄ0.5, bÄ1, mÄ1, nÄ8, sÄ2, rÄ4, kÄ1Õ4, gÄ0.0005, and cÄ0.03, BÄ13571.6, DÄ37281.6, F2Ä0, v1,2Ä167.78.
g
di-
own
In the presence of a one-to-one internal resonance,v1'v2 , v1

5v21«D whereD5(g(n22s2)p2)/2, ~the mode numbers mus
satisfy m21kn25r 21ks2!; together with primary resonance,V
'v1 , V5v11«s ~note that the nearness of the excitation fr
quencyV to any of the natural frequenciesv1 or v2 of the plate
624 Õ Vol. 67, SEPTEMBER 2000
t

e-

is expressed by using the detuning parameters!, the particular
solutions of Eqs.~11! and ~12! contain secular terms, dependin
on the resonance condition of the system. The solvability con
tions are obtained by equating the secular terms to zero as sh
below:
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Fig. 4 Force-response curve, F1 versus a1 and a2 . cÄ0.3, gÄ0.02, sÄ3, kÄ1Õ4, aÄ0.5, bÄ1, mÄ1, nÄ8, sÄ2, and rÄ4, B
Ä13571.6, DÄ37281.6, F2Ä3, v1,2Ä167.78.
1

2
eiVT0F12Axkgm2n2p4eiv1T01Axgm2n2p4eiv1T0

22iAxv1ceiv1T023Ax
2ĀxDeiv1T022iAx8v1eiv1T0

2BĀxAy
2ei ~2v22v1!T022BAxAyĀye

iv1T050, (13)

and
Journal of Applied Mechanics
1

2
eiVT0F22Aygkr2s2p4eiv2T01Aygr 2s2p4eiv2T0

22iAyv2ceiv2T023Ay
2ĀyDeiv2T022iAy8v2eiv2T0

2BĀyAx
2ei ~2v12v2!T022BAyAxĀxe

iv2T050. (14)

Let Ax51/2(p12 iq1)eil1 andAy51/2(p22 iq2)eil2 wherepi ,
SEPTEMBER 2000, Vol. 67 Õ 625
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qi andl i are real functions ofT1 ~@7#!. SubstitutingAx andAy in
~13!–~14! we get

p1852
2v1cp1

B
1

~k21!gm2n2p4q1

B
1

3D~p1
2q11q1

3!

4B
2q1l18

1
3q1q2

21p2
2q112p1p2q2

4
, (15)

q185
F1

B
1

~12k!gm2n2p4p1

B
2

3D~p1
31p1q1

2!

4B
1p1l18

2
3p1p2

21p1q2
212p2q1q2

4
2

2v1cq1

B
, (16)

p285
2p1p2q113q1

2q21p1
2q2

4
2

2v1cp2

B
2q2l28

1
~k21!gr 2s2p4q2

B
1

3D~p2
2q21q2

3!

4B
, (17)

q285
23p1

2p21p2q1
212p1q1q2

4
1

~12k!gr 2s2p4p2

B
2

2v2cq2

B

2
3D~p2q2

21p2
3!

4B
1p2l281

F2

B
(18)

wherel152Mp1sT1 , l25DT11sT122Np andM, N are in-
tegers.

The stability analysis is done using the pseudo arc length
proach suggested by Nayfeh and Balachandran@8#, because the
algebra is very tedious, Mathematica is used extensively to
the equilibrium points. For further information, the reader is re
ommended to refer to Nayfeh and Balachandran@8# where the
methods applicable to such problems are discussed in detail.
that in the stability analysisai5(pi

21qi
2)1/2.

Results of General Two-Mode Solution for a Rectangu-
lar Plate, With kÄ1Õ4

In Fig. 2, thick solid lines represent stable equilibrium, and
other lines represent the unstable equilibrium. The solution lo
stability at point 1 through a saddle node bifurcation, whe
s51.03228, and jumps to the upper stable branch. In the unst
portion, from point 1 to point 2, one eigenvalue of the Jacob
matrix has a positive real part. At point 2, wheres517.4508, two
eigenvalues start having positive real parts,~see enlarged portion
B!, which concludes that the solution is again unstable. The lo
tion of points 3, 4, and 5 is presented in detail in enlarged por
A. Point 3 is where one can observe a Hopf bifurcation w
s54.40351. After point 3, the equilibrium points assume a sta
solution until point 4 is reached withs54.40016. At point 4, due
to a saddle-node bifurcation, the equilibrium points again lo
stability and a jump occurs to the lower branch. At point 5, wh
s54.40339 the number of eigenvalues that have positive
parts increases to three which means that it is a Hopf bifurca
point. In enlarged portionC, at point 6, due to a Pitchfork bifur
cation the system loses stability. The unstable branch has
eigenvalue with a positive real part. The external resonance
tuning parameter,s, is 20.05085. Although in Fig. 2 only first
mode’s amplitude,a1 , is drawn, the picture will be complete if i
is evaluated with Fig. 3, where the frequency response curv
the second mode is given. Note that equally numbered po
correspond to each other.

The stability of the equilibrium points versus excitation amp
tude is presented for a rectangular geometry in Fig. 4. The e
tation of the second mode is not zero. At point 1, whereF1
575.3654, system loses stability through a saddle-node bifu
tion and jumps to the upper branch. On the stable branch, a
point 1, one of the eigenvalues of the Jacobian matrix assum
626 Õ Vol. 67, SEPTEMBER 2000 Copyright
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positive real part. As the excitation amplitude decreases toF1
515.7078, where point 2 is met, the system again assume
stable solution through a saddle-node bifurcation. At point 3, w
F1519.5179, a Hopf bifurcation is observed. Between points
and 4 there exist two eigenvalues with positive real parts. W
point 4 is reached, again due to a Hopf bifurcation the equilibri
points are stable. At point 4, the excitation amplitudeF1 assumes
a value of 47.3177. A detailed figure for the critical points is giv
in enlarged portionA.
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and possible non-breakup of solder jets in the presence of at
spheric oxygen, which causes the appearance of a layer of ox
on the interface. The work is timely because of its direct releva
to a host of emerging technologies exemplified by solder jettin
the manufacturing of microelectronic components.
@S0021-8936~00!01203-4#

1 Motivation and Introduction
Physical phenomena involving droplet generation and trans

mechanisms are of central importance in today’s science and t
nology. Examples of today’s leading technologies in this a
range from chemical and pharmaceutical, to power/energy
environmental technologies. Examples of emerging novel te
nologies are manufacturing and cooling of electronics and mic
electronics, the processing of new materials with advanced p
erties, biotechnologies, and micro and nanoscale technolo
The present work investigates an unexplored aspect of the b
problem of monodispersed droplet generation by oscillation
breakup of a liquid jet. It is an aspect relevant to surface oxida
of liquid metal jets, and directly applicable to a novel micr
manufacturing process referred to as solder jetting. This pro
targets to dispense picoliter quantities~droplets! of solder at high
generation rates for the mounting of micro-electronic compone
~Hayes and Wallace@1#!. With this process, molten droplets a
applied directly to the bonding pads of a semiconductor die~or
chip! using a technique similar to ink-jet printing. Solidified dro
lets after impact are then used to bond the die to a substra
circuit board. Another relevant technology is metal spray a
droplet deposition in micro-casting and advanced coating p
cesses. The state of the art in this technology was recently
viewed by Poulikakos and Waldvogel@2#.

From the point of view of fluid dynamics, the problem of inte
est in this work is the dynamics of a molten-solder jet, or molte
metal jet, whose capillary breakup creates the desired drop
Even when shrouded by a sheath of inert gas, the jet is suscep
to surface oxidation. The inert gas environment can at best o
limit the oxidation process. Such oxidation leads to a new m
phology of the interface. One dynamic aspect of the oxidiz
interface, which is the focus of the present contribution, is
added elasticity and the attendant flexural stiffness of the in
face. This very aspect is the central point of the present work.
our goal to develop an understanding of the role of these eff
on the capillary breakup characteristics of the jet. Thus we inv
tigate the stability of an inviscid axisymmetric jet of uniform su
face tension and flexural rigidity. It is shown that for large enou
values of flexural rigidity the capillary instabilities are suppress
The result corroborates the observed stabilization and pos
non-breakup of solder jets in the presence of atmospheric oxy
which causes the appearance of a layer of oxides on the inter

It should be noted that we are aware of only one ot
~semi-!analytical study which attempts to investigate the role
oxidation on the instability of a molten-metal jet~Artemev and
Kochetov @3#!. While that study mostly focuses on the develo
ment of a model for the oxidation process, its treatment of
surface rigidity is rather primitive, and amounts to retaining on
the last term on the left-hand side of Eq.~3! below in order to
capture the elastic effects; thus missing a major portion of
contribution of the flexural stiffness to the stabilization.

Whereas the algebraic manipulations below follow closely R
leigh’s original derivations, the main contribution is the particu
form of the dynamic boundary condition in Eq.~3! below, as well
as noting the relevance, and hence the need for a quantit
understanding, of this physical problem.

This problem constitutes the first step in modeling the influe
of surface oxidation on the capillary breakup of a jet of molt
metal. The work is timely because of its direct relevance to a h
of emerging technologies exemplified by solder jetting in t
manufacturing of microelectronic components.
Journal of Applied Mechanics
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2 Problem Definition
The problem to be studied is now defined. Consider the ca

lary instability of a cylindrical jet of an ideal fluid having a su
face tension,g, and a surface rigidity,D, described further below
The radius of the jet isa. In what follows, bothg and D are
assumed to be uniform in the azimuthal direction,u. Furthermore,
they are taken as uniform in the axial direction,x, as well, in order
to simplify the analysis. Physically, the assumption of axial u
formity is justified based on the observations of the phenomen
In the case of solder, a monolayer of tin oxide forms very rapi
~practically immediately! after the exit from the orifice. The
mechanism of the monolayer formation is oxygen adsorpti
Thereafter, the oxidation slows down and diffusion assumes
important role, hence the thickness of the shell does not vary v
much, and the axial uniformity assumption holds~Ricci, Castello,
and Passerone@4#!. The assumption of azimuthal uniformity ofg
andD follows from the observation that such distributions res
in the least stable behavior of the jet.

It is expected that viscous effects do not play a primary role
the breakup dynamics of thin molten-metal jets, due to the h
Reynolds number of the flow which is due in turn to the hi
speed of the flow and the low kinematic viscosity of the mater
Therefore, the jet flow is assumed to be an ideal flow in
current analysis.

3 Base-State Solution
In the frame moving at the uniform speed of the slug jet pro

the basic-state pressure and velocity for the incompressible, i
flow, are respectively,

P5
g

a
, U50.

4 Perturbed-State Governing Equations
Small, linear perturbations to the above basic state are gove

by the following restrictions of the Euler and continuity equation

r
]u

]t
52¹p, ¹•u50,

whereinr, u(x,r ,u,t), and p(x,r ,u,t) denote the constant den
sity, and the perturbation to the velocity and pressure, whiler and
t denote the radial coordinate and time, respectively. Combin
the above equations yields

¹2p50,

i.e., p is harmonic.
Interfacial conditions~linearized! are needed onr 5a in order

to complete the formulation. The kinematic condition for th
ideal flow is simply

]ur

]t
5z,

where subscript r denotes the radial component, andz
(5z(x,u,t)) is the local perturbation to the shape of the jet. T
second and final condition is the dynamic condition on the int
face, which requires that the pressure perturbation,p, of the jet,
just below the interface, be balanced solely by the surface ten
and rigidity of the interface.

In the absence of surface-tension~membrane! effects, shape
perturbations of a pressurized elastic cylindrical shell of radiua
are governed by

D¹4S 1

a2 1¹2D 2

z1
Eh

a2 z995¹4p, (1)

whereE is the Young’s modulus,h is the uniform shell thickness
andD is the so-called flexural rigidity, defined as
SEPTEMBER 2000, Vol. 67 Õ 627
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12~12n2!
,

with n denoting the Poisson’s ratio of the shell. Equation~1! is the
isotropic limit of the general case which was studied in Simmo
@5#. On the other hand, in the absence of elastic effects, if so
the capillary effects are considered, a simple analysis shows~cf.
Drazin and Reid@6#!

2gS z

a2 1¹2z D5p. (2)

Given the linearity of the analysis, Eqs.~1! and ~2! can be com-
bined in the leading order as follows:

2g¹4S z

a2 1¹2z D1D¹4S 1

a2 1¹2D 2

z1
Eh

a2 z995¹4p. (3)

The form of the underlined term is selected so as to ensure
correct form of the dispersion relation in the linear limit. Th
operator¹4 is added in front of the underlined term in order
cancel the same in front ofp in the right-hand side, in the limit
E50. As an aside, the origin of thea22 term is the curvature of
the unperturbed interface.

5 Perturbed-State Governing Solution
Modal expansions are assumed for all quantities as follows

~u,p,z!5~ û~r !,p̂~r !,ẑ !est1i~kx1nu!.

Subsequently dropping the carets, the solutions to the Euler
continuity equations are given as

p~r !5AIn~kr !,

u~r !5
A

rs F ikIn~kr !,kIn8~kr !,
in

r
I n~kr !G ,

where I n denotes the modified Bessel function of ordern of the
first kind.

Using the above forms forp andur , the kinematic and dynamic
boundary conditions read, respectively, as

2
AkIn8~ak!

rs
5sz,

H 2gF S 2k22
n2

a2D 2S 1

a22k22
n2

a2D G
1DS 2k22

n2

a2D 2S 1

a22k22
n2

a2D 2

1
Eh

a2 k4J z

5S 2k22
n2

a2D 2

AIn~ka!.

Eliminating z between the above two equations and dividing
result by a4 ~and defining the dimensionless wave number,a
([ak)!, one obtains the following dispersion relation for the te
poral growth rate,s, of the disturbances:

F2
g

a2 ~a21n2!2~12a22n2!

1
D

a4 ~a21n2!2~12a22n2!21
Eh

a2 a4G S 2
aI n8~a!

ras2 D
5~a21n2!2I n~a!.

Solving for the growth rate,s, and rearranging to cast the resu
in dimensionless form, one obtains
628 Õ Vol. 67, SEPTEMBER 2000 Copyright
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g/~ra3!
5FaI n8~a!

I n~a!
~12a22n2!G2

Ea

g Fh

a

aI n8~a!

I n~a!

3F ~h/a!2

12~12n2!
~12a22n2!21

a4

~a21n2!2G G . (4)

6 Discussion
Instability results if there exists a root ofs which possesses a

positive real part. In the classic limit ofEa/g50 it is seen clearly
that the growth rate is given by Rayleigh’s original expression

s25gF 1

a3r

aI n8~a!

I n~a!
~12a22n2!G .

Thus, in the absence of surface rigidity (E50) all long-wave
axisymmetric modes (n50) with dimensionless wave number,a,
less than unity are unstable. The introduction of rigidity (EÞ0)
reduces the growth rate and will eventually render the prob
fully damped, even for the long-wave disturbances. The stabil
tion follows from the positivity of the coefficient ofE in Eq. ~4!.
Therefore, a molten-metal jet whose oxidized interface builds
rapidly enough in the downstream direction will become stable
capillary breakup.
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This note shows that the axisymmetric deformation of an ela
cally isotropic solid of revolution, subject to both axial and radi
body forces, may be described in terms of Love’s stress func
provided certain simple terms are added to the displaceme
stress function relations.@S0021-8936~00!01003-5#
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Let ~r, u, z! denote the standard set of polar cylindrical coor
nates. This note was inspired by the statement on p. 197 of F
@1# that, in the linear theory of elastically isotropic axisymmet
bodies under axisymmetric loads, a body forcepz in the
z-direction is . . . ‘‘the only non-vanishing component that can b
treated by@Love’s stress# function.’’1 This statement is based o
the observation that thez-component of the Galerkin vector sati
fies the inhomogeneous biharmonic equation

~12n!¹4Fz52pz (1)

and that the auxiliary equations for the physical components~s r ,
su , sz , t! of the axisymmetric stress tensor have the same fo
as those given by Love@2# on p. 276 in terms of a stress functio
x. In ~1!, ¹25]2/]r 21r 21]/]r 1]2/]z2 is the axisymmetric La-
placian andn is Poisson’s ratio. Fung’s remark might suggest th
the only way to treat an axisymmetric radial body forcepr is to
introduce the radial componentFr of the Galerkin vector. This, in
turn, would lead to an additional nonhomogeneous biharmo
equation to solve.

The present note gives a simpler alternative for treating ra
body forces. I show that the introduction of aradial load potential

Q5E E prdrdz, (2)

and a slight modification of the expressions given by Love for
radial and axial displacement componentsu and w lead to the
nonhomogeneous biharmonic equation

~12n!¹4x52pz1~122n!¹2Q1Q,zz, (3)

where a comma followed by a subscript denotes differentia
with respect to that subscript . Ifpr ~and henceQ! vanish, ~3!
reduces to~1!.

The key step in accommodating radial as well as axial bo
forces is to modify the second of the two equations~66! on p. 276
of Love @2# by adding a certain load term. Thus, I set

Eu52~11n!x,rz ,
(4)

Ew5~11n!@2~12n!¹2x2x,zz22~122n!Q#,

whereE is Young’s modulus. From these equations, the stra
displacement relations,

er5u,r , eu5r 21u, ez5w,z , g5u,z1w,r , (5)

and the stress-strain relations,

~11n!H s r

su

sz

J 5
nE

122n
~er1eu1ez!1EH er

eu

ez

J ,

(6)
2~11n!t5Eg,

~@3#, p. 11! follow the stress-stress function representations

s r5~n¹2x2x,rr 22nQ!,z (7)

su5~n¹2x2r 21x,r22nQ!,z (8)

sz5@~22n!¹2x2x,zz22~12n!Q#,z (9)

t5@~12n!¹2x2x,zz2~122n!Q#,r . (10)

Of course, these expressions reduce to Love’s if the body fo
vanish.

All that remains is to satisfy the two equilibrium equations
the radial and axial directions:

s r ,r1t,z1r 21~s r2su!1pr50, t,r1sz,z1r 21t1pz50.
(11)

1Fung calls this a ‘‘strain’’ function.
Copyright © 2Journal of Applied Mechanics
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It is readily verified using~7–11! that~11!1 is satisfied identically,
whereas~11!2 reduces to~3!.

References
@1# Fung, Y. C., 1965,Foundations of Solid Mechanics, Prentice-Hall, Englewood

Cliffs, NJ.
@2# Love, A. E. H., 1944,A Treatise on the Mathematical Theory of Elasticit,

Dover, New York.
@3# Timoshenko, S. P., and Goodier, J. N., 1970,Theory of Elasticity, 3rd Ed.,

McGraw-Hill, New York.

Proper Boundary Conditions for
Infinitely Layered Orthotropic Media

E. L. Bonnaud
Graduate Student

J. M. Neumeister
Associate Professor

Department of Solid Mechanics, Royal Institute of
Technology, S-100 44 Stockholm, Sweden

A stress analysis of a plane infinitely layered medium subjecte
surface loadings is performed using Airy stress functions, integ
transforms, and a revised transfer matrix approach. Prop
boundary conditions at infinity are for the first time establishe
which reduces the problem size by one half. Methods and appr
mations are also presented to enable numerical treatment an
overcome difficulties inherent to such formulations.
@S0021-8936~00!01103-X#

1 Introduction
Layered media, and their analysis are important in many te

nical applications: e.g., microelectronic components, sandw
structures, structural composite materials, or soil layers. La
nated composites consist of different elastic layers, often indivi
ally orthotropic, but can from a structural mechanics point of vie
be sufficiently well described with homogenized elastic proper
~@1,2#!. However, detailed stress fields in individual layers close
highly loaded regions are still necessary for, e.g., failure analy
For a fair picture of elastic responses, standard finite elem
methods are sufficient but for a large number of layers, for h
stress gradients and singularities, etc., analytical and se
analytical methods still have advantages. Generally, integral tr
forms render layerwise four coefficients and thus systems witp
layers require determination of 4p unknowns. The stiffness o
flexibility matrix approach uses layer strains or stresses as s
variables giving a system of 2p simultaneously linear equation
~@3–5#!. Another method, the transfer matrix approach, step
step eliminates the unknowns for intermediate layers. Final eq
tions to be solved involve only layers with boundary conditio
prescribed~@6–8#!.

In previous work, semi-infinite systems are modeled as a fin
number of layers on semi-infinite half-planes which, using t
transfer matrix method, leads to a linear system of eight equati
Here, proper far-field boundary conditions for periodic infinite

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the JOURNAL OF APPLIED MECHAN-
ICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 16, 199
final revision, Apr. 21, 2000. Associate Technical Editor: J. R. Barber.
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layered systems are presented based on the transfer matrix
proach, which reduces the number of equations to four. M
details of the analysis can be found elsewhere~@9#!.

2 Airy Stress Functions and One-Dimensional Fourier
Transform

Solutions to plane boundary value problems are readily
pressed with the Airy stress functionw(x,y) fulfilling a fourth-
order PDE. With boundaries and axes of orthotropy~1 and 2!
coinciding with x and y-coordinates~Fig. 1!, a one-dimensional
Fourier transform~with respect tox! results in an ODE~in y! for
the transformed stress functionF(j,y), the solution to which is
~@1#!

Fortho~j,y!5a~j!e2aujuy1b~j!e2bujuy1c~j!eaujuy1d~j!ebujuy

(1a)

F iso~j,y!5@a~j!1b~j!y#e2ujuy1@c~j!1d~j!y#eujuy. (1b)

Only for the orthotropic case, the solution depends on elastic c
stants througha and b ~see Eqs.~A1!!. The coefficientsa(j),
b(j), c(j), d(j) are functions of the transform variablej; they
are determined by transformed boundary conditions imposed
transformed stressesSy(j,y), Sxy(j,y) ~but not Sx(j,y)! or on
transformed displacementsU(j,y) andV(j,y) ~see Eqs.~A2!!.

3 Continuity, Boundary, and Infinity Conditions
A local coordinate system (x,y) is used in each layer where th

y-coordinate always measures the distance from each respe
layer top~see Fig. 1!. Continuity between layeri andi 11 implies
that real, and thus transformed, values of both stresses
y-components and displacements remain unchanged ove
bonded interface. With these collected in a vector stateSi(j,y)
5@Sy(j,y),Sxy(j,y),U(j,y),V(j,y)# i

T continuity reads

Si~j,y5t i !5Si 11~j,y50!, (2)

where t i is the thickness of layeri. Collecting the sought for
coefficients in a vectorKi(j)5@a(j),b(j),c(j),d(j)# i

T , Si(j,y)

Fig. 1 Multilayered half-plane with repetitive unit of q layers
„local coordinates „x ,y … for every layer …
630 Õ Vol. 67, SEPTEMBER 2000
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is rewritten asSi(j,y)5Qi(j,y)Ki(j) ~see Eqs.~A5!, ~A6! and
~A7! for explicit expressions forQi(j,y)!. After solving for
Ki 11(j) in Eq. ~2!, the continuity condition reads

Ki 11~j!5Qi 11
21 ~j,y50!Qi~j,y5t i !Ki~j![M i~j!Ki~j!. (3)

Equation~3! defines the transfer matrixM i(j) used here, which is
slightly different compared to previous work~@6–8#!. With the
choice of local coordinates, all transfer matrices depend on o
layer properties and not of layer position which is essential he
For any other layeri 1p, repetitive use of Eq.~3! leads to

Ki 1p~j!5@M i 1p21~j! . . . M i~j!#Ki~j!. (4)

These four equations and eight unknowns together with f
boundary conditions need only to be solved for finite stackin
For semi-infinite layered media, boundary conditions at both
surface and infinity can be expressed involving only the first la
set of coefficients which reduces the size of the system to fou

Two boundary conditions are prescribed at the top layer s
face, expressing Fourier transforms of applied tensile and s
stressesSy(j,y50)5Sy

s(j) andSxy(j,y50)5Sxy
s (j).

In semi-infinite periodic layered media~repetitive units withq
layers, see Fig. 1! the coefficients in layers 1 and 11mq can be
related to each other through repetitive use of Eq.~4!. After di-
agonalization of the multiple layer transfer matr
@Mq(j) . . . M1(j)#, this gives

K11mq~j!5@Mq~j! . . . M1~j!#mK1~j!

5P1~j!D1
m~j!P1

21~j!K1~j!. (5)

This @Mq(j) . . . M1(j)# matrix has unity determinant~@8#!. Its
four eigenvaluesl i , positive and reciprocal in pairs, are collecte
in descending order in the diagonalized matrixD1(j) so thatl1
.l2.1/l2.1/l1 . In subsurface layers stresses must be limi
~as m increases! and thus the corresponding set of coefficien
K11mq(j) must be bounded sinceF11mq(j,y) is expressed in
local coordinates, cf. Eqs.~1!,~2!. This implies that all terms in-
volving l1 and l2 must vanish sincelm increases indefinitely
with m for l.1. This, in turn, gives the sought for conditions fo
the top layer coefficientsK1 expressing infinity condition for a
layered half-plane: The first two components in the vec
P1

21(j)K1(j) of Eq. ~5! must be zero. WithL1(j) and L2(j)
being the first two lines inP1

21(j), these conditions read

L1~j!K1~j!50 (6a)

L2~j!K1~j!50. (6b)

With l additional layers on top of a repetitive unit,Kl 11(j) is first
related toK1(j) through Eq.~4! and replaced in Eqs.~6a,b! which
again poses the appropriate conditions only onK1(j). Also for
nonperiodic stackings or media of finite thickness, the previo
method is still applicable:L1(j) andL2(j) tend towards a limit as
q increases since the influence of the far-field conditions on
state of the first layer diminishes with increasingq ~Saint Venant’s
principle!. Truncating at finiteq corresponds to approximating th
medium with an infinite sequence ofq-sized unities.

With K1(j) known, all othersKi(j) are determined through
Eq. ~4!; insertion in appropriate expressions and inverse Fou
transform then gives stresses and displacements.
Transactions of the ASME
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4 Solution and Numerical Procedure
The analysis presented above generally requires nume

treatment, which involves difficulties while extracting eigenvalu
and eigenvectors due to ill-conditioned matrices~@7,10,11#!. Reli-
able a(j),b(j),c(j),d(j) values can only be obtained up to
certain limit j lim ~j lim depends only on laminate properties! while
the inverse Fourier transform requires accuracy for highj particu-
larly for small x andy-values.

For smally, far from the loaded region, accuracy is not a ma
concern since stresses approach zero. On the other hand, acc
becomes essential for concentrated or singular~e.g. line! loads,
when also thex-distance is sufficiently small. There, in the clo
vicinity of a highly loaded region, the influence of the lamin
thickness disappears and the solution asymptotically approa
the one of a loaded homogeneous half-plane. Such solutions
available in closed form~@12#: isotropic;@2#: orthotropic! and can
additionally be integrated fromj lim up to infinity thereby avoiding
truncation errors in the inverse Fourier transform. The approxim
tion is inaccurate~in a relative sense! in regions of low signifi-
cance, i.e., with low stress magnitudes while the agreemen
excellent where it matters. Improved accuracy by one orde
magnitude over the entirej-domain can further be achieved b
numerically evaluating the difference between the homogene
half-plane ~hhp! and multilayered half-plane~mhp! solutions.
Smhp(j,y)e2 ixj and Shhp(j,y)e2 ixj are harmonics of the rea
stress functionssmhp(x,y) andshhp(x,y) ~@6#! and both describe
the same material, submitted to the same load but with diffe
boundary conditions aty5t1 . The shorter the wavelength~i.e.,
the higherj!, the less significant is the influence from the boun
aries, i.e., the first interface. Thus, the two functions tend tow
one another asj approaches infinity. With inverse Fourier tran
form F21, real stress becomes

smhp~x,y!5shhp~x,y!1F21@Smhp~j,y!2Shhp~j,y!#. (7)

Stresses shhp(x,y) and hhp-coefficients to be inserted
Shhp(j,y) are given in Eqs.~A3!, ~A4!.

5 Conclusion
A simple and straightforward method to formally establish t

full stress solution for infinitely layered media with generally o
thotropic constituents is devised. Both boundary and infinity c
ditions are posed on the top layer solution; hereby the size of
Journal of Applied Mechanics
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system to be solved reduces to four. In regions where nume
difficulties due to ill-conditioned matrices arise, they are circu
vented with the aid of existing asymptotically correct homog
neous half-planes solutions. As an example, the detailed s
analysis of a cross-ply laminate subjected to tensile and tange
line loads is presented in an extended report by@9#.
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Appendix
Orthotropic constitutive equation and coefficients:

F «x

«y

2«xy

G5F s11 s12 0

s21 s22 0

0 0 s66

G F sx

sy

txy

G
(A1)

a,b5As6612s12

2s11

6AS s6612s12

2s11
D 2

2
s22

s11

Real and transformed stresses and displacements:

¦

sx~x,y!5
]2f

]y2 ~x,y! Sx~j,y!5
d2F

dy2 ~j,y!

sy~x,y!5
]2f

]x2 ~x,y! Sy~j,y!52j2F~j,y!

txy~x,y!5
]2f

]x]y
~x,y! Sxy~j,y!52 i j

dF

dy
~j,y!

U~j,y!52 i S s11

j

d2F

dy2 ~j,y!2s11jF~j,y! D
V~j,y!5

s11

j2

d3F

dy3 ~j,y!2~s661s12!
dF

dy
~j,y!

(A2)

Homogeneous half-plane stresses~with sy
s(s) and txy

s (s) pre-
scribed surface stresses!:
5
sx

hhp~x,y!5
a1b

p E
2`

` @abysy
s~s!1~x2s!txy

s ~s!#~x2s!2

@~ay!21~x2s!2#@~ay!21~x2s!2#
ds

sy
hhp~x,y!5

a1b

p
y2E

2`

` abysy
s~s!1~x2s!txy

s ~s!

@~ay!21~x2s!2#@~ay!21~x2s!2#
ds

txy
hhp~x,y!5

a1b

p
yE

2`

` @abysy
s~s!1~x2s!txy

s ~s!#~x2s!

@~ay!21~x2s!2#@~ay!21~x2s!2#
ds

(A3)

Coefficients for a homogeneous half-plane:

ahhp~j!5
bSy

s~j!2 i sgn~j!Sxy
s ~j!

~b2a!j2 bhhp~j!5
aSy

s~j!2 i sgn~j!Sxy
s ~j!

~b2a!j2 chhp~j!5dhhp~j!50 (A4)

Matrix relating state vectorSi to coefficient vectorKi :

Qi~j,y!5Ci~j,y!Di~j,y!Ei~j,y! (A5)

Orthotropic case:
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5
Ci~j!5diag~2j2,i juju,2 i j,2uju! Ei~j,y!5diag~e2aujuy,e2bujuy,eaujuy,ebujuy!

Di5F 1 1 1 1

a b 2a 2b

f 1~a! f 1~b! f 1~a! f 1~b!

g1~a! g1~b! 2g1~a! 2g1~b!

G f 1~g!5s11g
22s12

g1~g!5s11g
32~s121s66!g

~gP$a,b%!

(A6)

Isotropic case:

5
Ci~j,y!5diag~2uju,i j,2 i sgn~j!,21! Ei~j,y!5diag~e2aujuy,e2bujuy,eaujuy,ebujuy!

Di~j,y!5F 1 ujuy 1 ujuy

1 f 2~y! 21 f 2~2y!

k2 g2~y! k2 2g2~2y!

l 2 h2~y! 2 l 2 h2~2y!

G k25s112s12

l 25s112~s121s66!

f 2~y!5ujuy21
g2~y!5~s112s12!ujuy22s11

h2~y!5s11~ ujuy23!2~s121s66!~ ujuy21!

(A7)
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Chain Reaction From Impact on
Coaxial Multibody Systems

W. J. Stronge
Department of Engineering, University of Cambridge,
Cambridge CB2 1PZ, UK. Mem. ASME

In a mechanism or system of ‘‘rigid’’ bodies that are joined
connected by compliant points of contact, an external impac
one point in the system generates a pulse of reaction force
propagates outward successively through neighboring joints
connections. At each point of contact between adjacent bod
this wave of reaction force is just sufficient to change the rela
velocities so that interpenetration of the bodies is prevented;
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the reactions enforce the displacement constraints. Each con
tion has a local wave speed that depends on the contact com
ance and the mass of the adjacent bodies. Where the local w
speed is decreasing with ‘‘distance’’ from the external impact, t
reaction impulses at neighboring contacts occur sequentia
whereas if the local wave speed is increasing substantially w
distance, the impulses at neighboring contacts occur simu
neously. Between these limits, the dynamics of impact of m
body systems with compliant contacts depends on coupling
tween time-dependent contact forces rather than some assu
timing of the resultant impulses.@S0021-8936~00!00903-X#

For hard bodies with nonconforming contact surfaces, imp
results in very rapid changes in relative velocity of the collidi
bodies as a result of large interaction forces that act in a small
of contact during a brief period of collision. When the bodies a
part of a kinematic chain or mechanism, the velocity chan
induce small relative displacements at other points where the
liding bodies are supported or connected to adjacent bodies
reaction forces developed as a consequence of these small re
displacements at secondary contacts are the means of transm
the impact process through the mechanism.

To analyze effects of impact in a multibody system of ‘‘rigid
bodies, some previous authors assume that impulsive reac
occur simultaneously at all points of contact; e.g.,@1–3#; essen-
tially, this is the method of rigid-body dynamics~Pars@4#!. Other
authors assume that in multibody dynamics the reaction impu
at points of contact occur sequentially; e.g.,@5–8#. A third ap-
proach was employed by Cundall and Strack@9# and Chatterjee
@10#; they used discrete element modeling of the local complia
at each contact point. With this more detailed, time-depend
analytical approach, Stronge@11,13# has shown that in a periodic
system, a collision between two elements in a kinematic ch
generates a wave of compression that propagates away from
impact point. This is a dispersive wave that travels at a sp
which depends on the local compliance at each contact point
the inertia properties of neighboring bodies. In this periodic s
tem the compression pulse propagating away from an impact
essarily envelopes two or more contact points at any time;
pulse components with small wavelength do not propagate.
analyze these more detailed results of impact on a system
‘‘rigid’’ bodies connected by compliant unilateral displaceme
constraints, it is necessary to consider two distinct scales of r
tive displacement. Very small relative displacements must be c
sidered in order to obtain the time-dependent interaction for
that change the relative velocities—these displacements mus
sufficiently small, however, so that they have negligible effect
inertia properties of the system. This note investigates the rang
1,
© 2000 by ASME Transactions of the ASME
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applicability of various analytical assumptions regarding timing
reactions in an elastic multibody system where the inertia
contact compliance properties vary smoothly.

Dynamics of Chain of Rigid Bodies Connected by Com-
pliant Contacts

Consider a collinear system of three elastic spheresB1 ,B2 ,B3
such as that shown in Fig. 1; the spheres have ma
M1 ,M2 ,M3 , respectively. At any timet the spheres are located
coordinatesXi(t) and they have speedsẊi(t), i 51,2,3 in the
axial direction. This system has kinetic energyT where

2T5(
i 51

3

MiẊi
2. (1)

When any pair of bodies are compressed together, contact fo
act between the bodies at the points of contactj 51,2. These
forces prevent overlap or interpenetration; if the bodies are n
conforming and have small compliance of each contact region
forces arise from internal deformations that decrease rapidly w
radial distance from the contact area between each pair of to
ing bodies. Because these deformations remain local to the s
area of contact where a pair of nonconforming bodies touch, t
cause only a very small displacement or indentation of the
face. The normal component of relative displacement or inde
tion at the j th contact pointd j , which is the sum of the surfac
indentations of both bodies, is given by

d j5Xj 112Xj , j 51,2. (2)

If the system has no active external forces acting during
collision period, momentum is conserved and the center of m
has speedV̂5M 21( i 51

3 MiẊi(0), M5M11M21M3 . For this
system where momentum is conserved the kinetic energy ca
separated into part that is invariant during the collision proc
and a partial kinetic energy of relative motionTrel ; i.e., T5Trel

10.5MV̂2. The kinetic energy of normal relative motionTrel is
defined as

2Trel~ t ![(
i 51

3

Mi@Ẋi~ t !2V̂#2. (3)

At any point of contact, a part of the initial kinetic energy
normal relative motionTrel(0) is transformed during compressio
into strain energy of internal deformation.

Conservation of translational momentum relative to the cen
of mass 05( i 51

3 Mi(Ẋi2V̂), together with~1! and ~2! give

2Trel5M 21@M1~M21M3!ḋ1
212M1M2ḋ1ḋ21M3~M11M2!ḋ2

2#

5 ż1
212ż1ż2 cosa1 ż2

2 (4)

where

z15d1@M 21M1~M21M3!#1/2, z25d2@M 21M3~M11M2!#1/2.
(5)

These nondimensional variables which symmetrize the equat
were suggested by Ivanov and Larina@12#.

The normal contact forcesF j , j 51,2 which cause these rela
tive displacements are solely compressive and they depend o
geometry of the contact region. The normal contact forces at c
tactsC1 andC2 can be expressed as

Fig. 1 Collinear system of three spheres with small local com-
pliance at contact points
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F j5 f ~d j !H~d j ! where H~d j ![H 1, d j>0

0, d j,0
(6)

The contact force-displacement relationf (d j ) for any contact de-
pends on the geometry of the contact region and the contact p
sure. If the bodies are elastic and contacting surfaces are sphe
the stress field is three dimensional and Hertz contact theory g
f (d j )5ks jd j

3/2 while if the contacting surfaces are cylindrical wit
parallel axes, the stress field is two dimensional andf (d j )
5kc jd j . Hereks j andkc j are the stiffness coefficients at thej th
contact for spherical and cylindrical contacts, respectively. Th
interaction forces can be derived from potential functions for
ther spherical contactUs or cylindrical contactUc .

~5/2!Us5ks1d1
5/2H~d1!1ks2d2

5/2H~d2! (7a)
or

2Uc5kc1d1
2H~d1!1kc2d2

2H~d2!. (7b)

The three-body system is conservative if the stresses rem
elastic. Assuming that there are no changes in configuration
ing contact because the contact period is very small~but at the
same time acknowledging that contact forces are generated
very small relative displacements!, the equations of relative mo
tion for cylindrical contacts can be obtained from~4!, ~5! and~7b!
together with Lagrange’s equation;

H0
0J 5F 1 cosa

cosa 1 G Hd2z1 /dt2

d2z2 /dt2J 1sin2 a H z1H~z1!

g2z2H~z2!J (8)

where a nondimensional timet and ratio of stiffness to mas
gradientsg2 are obtained as

v0
25k1 /M2 t5v0tA11M2 /M1.

cosa5A M1M3

~M11M2!~M21M3!
, g25

k2

k1

M1~M21M3!

M3~M11M2!
. (9)

This paper is concerned with identifying necessary conditio
for multibody dynamics where accurate calculations can be
tained on the basis of an assumed order of impulsive reaction
multiple contacts; namely that reactions can be assumed to o
either sequentially or simultaneously. For this purpose, consid
system that has a smooth gradation of properties whereh is the
gradient of mass andk is the gradient of stiffness; e.g., let mass
M15h21M2 , M2 , M35hM2 and stiffnessesk2 /k15k. These
inertia and stiffness gradients give

cosa5
1

11h
, g25

k

h
(10)

where g21 is the gradient of wave speed and a characteri
frequencyv0 is given byv0

25k1 /M2 .
In this coupled system, the question of whether reaction

pulses atC1 andC2 are simultaneous or sequential is a manife
tation of the difference in phase of response at contacts. The
genvalues that give nondimensional frequencies of modes ar

v i
2

v0
2 5

~11h!~11g2!

2 H 16A12
11h1h2

~11h!2

4g2

~11g2!2J . (11)

To retrieve the velocities in an inertial frame from the nond
mensional relative velocitiesdzi /dt, the following relations are
obtained:

H Ẋ1

Ẋ2

Ẋ3

J 5H V̂

V̂

V̂
J

1
1

A~11h!~11h1h2! F h~11h! h3/2

21 h3/2

21 2h21/2~11h2!
G

3H dz1/dt
dz2 /dtJ . (12)
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Equations~8! are solved numerically by means of a Rung
Kutta method of first order. For a system of initially unstress
bodies,d15d250. A distribution of initial velocities that repre
sents direct collinear impact between a single bodyB1 and the
remainder of the chain is considered; i.e.,Ẋ15V0 , Ẋ25Ẋ350 or
ḋ1 /V051, ḋ2 /V050.

Effect of Property Gradients on Terminal Velocity
Distribution

In Fig. 2 the distribution of final velocities in a three ball cha
has been plotted as a function ofg2 at two different values of the
mass gradienth. Essentially, ifg,1 the results asymptotically
approach those for sequential collisions whereas ifg@1 the re-
sults asymptotically approach those for simultaneous collisio
With a pair of nondimensional parameters that characterize

Fig. 2 Effect of gradient of wave speed gÀ1 on terminal ve-
locities of balls B 1 , B 2 , and B 3 in three-sphere chain with mass
gradient „a… hÄ1 and „b… hÄ4. Calculations assume elastic im-
pact „e*Ä1… and either linear compliance „light lines … or Hertz
compliance „heavy lines ….
634 Õ Vol. 67, SEPTEMBER 2000
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systemg and h, the magnitude of final velocities depend on th
gradient of masses but the distribution of final velocities is n
affected by the mass gradienth. The results for both cylindrical
and spherical contacts converge to the same asymptotic lim
convergence is slightly faster for cylindrical contacts but the
havior is qualitatively the same.

The timing of reactions at the different contact points depe
on only one parameter—the gradient of wave speedg21 in the
system. Figure 3 shows that ifg,1, after impact within the sys-
tem the maximum compression at the second point of contacC2
occurs substantially later than that atC1 ; i.e., the local wave
speed decreases with increasing distance from the impact p
On the other hand, ifg@1 maximum compression occurs almo
simultaneously atC1 and C2 . For linear compliance, maximum
compression occurs simultaneously ifg>6.7, and larger values o
the gradient of wave speedg21 result in maximum compressio
at the more distant contact pointC2 before maximum compressio
at C1 . With very largeg this occurs because the natural period
oscillation atC2 is small in comparison with the natural period
C1 ; i.e., the rapidly increasing rate of oscillation for success
contact forces in the direction of propagation is the cause of p
mature separation and a subsequent secondary impact atC2 .

In a collinear system of compact hard bodies with nonconfor
ing contacts that are initially touching, impact results in a wave
compression that travels away from the point of impact. T
wave travels at a speed that depends on the compliance of
deformation at each contact and the inertia of the adjacent bod
For a periodic chain of spherical bodies composed of mate
with densityr, this speed of propagation through the chain is
the order ofc'AY/r whereY is the uniaxial yield stress.1 This
speed typically is of the order of 0.1 of the speed of propagat
AE/r through a continuum composed of the same material. If
system has smoothly varying properties, the only factor affect
simultaneity of reactions at the contact points is the gradien
wave speedg21. If g@1 the reactions are almost simultaneo
and may involve secondary impacts whereas ifg,1 the reactions
are almost sequential and they occur in order of increasing
tance from the point of impact. The reactions that develop
initially quiescent contacts are the result of very small deform

1Linear contact stiffnesskc52.76YR* is energetically equivalent at the force fo
initial yield to nonlinear Hertzian contact stiffness.

Fig. 3 Nondimensional time of maximum compression t jc at
first and second contact points as function of gradient of wave
speed gÀ1. Calculations assume elastic impact „e*Ä1… and
either linear compliance „light lines … or Hertz compliance
„heavy lines ….
Transactions of the ASME
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tions that arise during the contact period. In analyses of multib
impact dynamics, these time-dependent reactions can be rep
by reaction impulses at points of secondary contact only if eit
g,1 or g@1.
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Discussion: ‘‘Response Bounds for
Linear Damped Systems’’ „Hu, B. and
Eberhard, P., 1999, ASME J.
Appl. Mech., 66, pp. 997–1003…

S. M. Shahruz
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Berkeley, CA 94709
e-mail: shahruz@robotics.eecs.berkeley.edu

In a recent paper, the authors consider the dynamics o
n-degree-of-freedom linear system represented by

Mÿ~ t !1Dẏ~ t !1Ky~ t !5 f ~ t !, y~0!5y0 , ẏ~0!5 ẏ0 , (1)

for all t>0, where the vector of displacementsy(t)PRn and the
vector of applied forcesf (t)PRn. They obtain upper bounds o
the norms of responses of the system~1! for the cases of free and
forced vibration.

The authors obtain an upper bound oniy(t)iª@y(t)Ty(t)#1/2

for all t>0. Although, it is useful to know the time evolution o
an upper bound on the functiont°iy(t)i , it is more important to
have a tight upper bound on

iyiªmax
t>0

iy~ t !i , (2)

which is an indication of the largest displacement~strain! of the
system~1!. A tight bound upper bound oniyi, which is desirable
for the worst-case scenario studies, results in less conserv
designs.

The authors write that@1# ‘‘In comparison to the respons
bounds available in the literature, the ones presented here ar
only closer to the exact responses, but are also simpler to c
pute.’’ This statement is evaluated in the following discussion

According to @1#, an upper bound oniyi for the case of free
vibration is obtained as follows:
~i! Compute

D* 5M 21/2DM 21/2, K* 5M 21/2KM 21/2. (3)

~ii ! Compute

m55
lmin~D* !/2, for lmax

2 ~D* !<4lmin~K* !,

minH 1

2
~lmax~D* !2Almax

2 ~D* !24lmin~K* !!,

1

2
lmin~D* !J otherwise.

(4)

~iii ! Compute

D85D22mM , K85K2mD1m2M , (5)

E05
1

2
ẏ0

TMẏ01
1

2
y0

TKy0 , (6a)

E0* 5E01m2y0
TMy01my0

TMẏ02my0
TDy0/2. (6b)
636 Õ Vol. 67, SEPTEMBER 2000 Copyright
,

an

f

tive

not
om-

~iv! An upper bound oniyi is

iyi<min$A2lmin
21~K !E0,A2lmin

21~K8!E0* %. (7)

The computation of the upper bound in~7! via steps~i!–~iv! is
not as easy as that of some bounds in the literature. For insta
according to Shahruz and Mahavamana@2# an upper bound oniyi,
when the matrixDM 21K1KM 21D is positive definite~such as
in classically damped systems!, is

iyi<~@lmax~M !/lmin~M !#~y0
Ty01 ẏ0

Tẏ0 /v1
2!!1/2, (8)

wherev1 is the smallest undamped natural frequency of the s
tem ~1!. It is evident that the computation of the upper bound
~8! is much simpler than that in~7! via steps~i!–~iv!.

Now, it is determined how conservative the upper bounds in~7!
and ~8! are. In @1#, the system~1! with the following coefficient
matrices is considered:

M5F1 0

0 1G , K5F 5 21

21 1 G , D5~M1K !/2. (9)

For different initial conditions the following upper bounds a
obtained:
~B1! y1(0)51, y2(0)50, ẏ1(0)5 ẏ2(0)50:

From numerical simulation: iyi51, (10a)
According to ~7!: iyi<2.51, (10b)

According to ~8!: iyi<1. (10c)

~B2! y1(0)50, y2(0)51, ẏ1(0)5 ẏ2(0)50:

From numerical simulation: iyi51, (11a)
According to ~7!: iyi<1.15, (11b)

According to ~8!: iyi<1. (11c)

Results in~10! and~11! show that the upper bounds computed
~7! aremuch moreconservative than those obtained by~8!.

Next, upper bounds are computed for another system wh
coefficient matrices are given in~92! of @1#. For the coefficient
j50.1 ~see@1# for details!, y05@0 0 0 0#T, andẏ05@1 1 1 1#T, it
is concluded that

From numerical simulation: iyi51.64, (12a)
According to ~7!: iyi<4.14, (12b)
According to ~8!: iyi<4.11. (12c)

This example shows that both~7! and~8! yield conservative upper
bounds oniyi , even though~8! resulted in a tight bound for the
system whose coefficients matrices are given in~9!.

In summary, it is shown that the upper bounds on response
the system~1! derived in@1# are neither easily computable nor a
tight, as it is evident from~10! and~11!. Also, it is shown that no
upper bound can be expected to be tight for all systems, as
apparent from~12!.
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Closure to ‘‘Discussion of ‘Response
Bounds for Linear Damped
Systems’ ’’ „2000, ASME J. Appl.
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Bin Hu
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Peter Eberhard
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We thank Mr. S. Shahruz for his interest in our paper a
welcome his comment. In our paper we consider a response bo
as a bound with time evolution. Instead of Eq.~7! in Mr. Sha-
hruz’s discussion, our original response bound~Eq. ~49! in @1#!
reads

iy~ t !i<min$A2lm
21~K !E0, e2utA2lm

21~K 8!E0* %. (1)

The terme2ut appearing in this response bound plays an imp
tant role. For the maximum amplitude of the response maxtiy(t)i ,
we prefer to call it amplitude bound. S. Shahruz and P. Maha
mana’s results in paper~@2#! and some results from W. Schiehle
and the first author of this closure in papers~@3,4#! are for the
amplitude bounds. Here we would like to point out that the pr
cedure listed in S. Shahruz’s discussion should be to compute
response bound given in Eq.~1! above. It may not be meaningfu
for the amplitude bounds. In Eq.~29! of our paper, we gave an
amplitude bound

max
t

iy~ t !i<A2lm
21~K !E0 (2)

which also follows directly from Eq.~1! in this closure. We can
see that for the computation of this amplitude bound, most ope
tions in the procedure listed in S. Shahruz’s discussion are
necessary. Compared with Mr. Shahruz and Mr. Mahavaman
amplitude bound given in Eq.~8! of Mr. Shahruz’s discussion, we
have the opinion that our amplitude bound is not harder to co
pute since either the computation of the smallest undamped
quency v1 or the determination whether the matrixDM21K
1KM 21D is positive semi-definite costs extra time. Though h
showed their amplitude bounds are tighter than ours for two
amples, we do not think this conclusion holds in general. Let
choose a simple example to explain this point. If we change
mass matrix in Eq.~9! of Mr. Shahruz’s discussion to

M5F10 0

0 1G or M5F0.1 0

0 1G (3)

and the numerical values of the damping matrix and the stiffn
matrix remain unchanged, then Mr. Shahruz and Mr. Mahavam
na’s amplitude bounds for both cases B1 and B2 become
However, our amplitude bounds remain unchanged. They are
2.51 for the case B1 and 1.15 for the case B2. It is not difficult
find examples which show neither method to be superior.

Besides, we would like to state that although Mr. Shahruz a
Mr. Mahavamana’s paper about amplitude bounds for some n
classically damped systems was published in December 199
the Journal of Sound and Vibration, their results were not known
to the authors since our paper was received by the ASME App
Mechanics Division on Aug. 24, 1998 and the final revision of t
paper was received on Jan. 19, 1999. Therefore, a compar
Copyright © 2Journal of Applied Mechanics
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with their results was not possible~and maybe not even reason
able since in our paper we discussed mainly response bounds
time evolution and not amplitude bounds!.

In conclusion, we agree with Mr. Shahruz that no upper bou
can be expected to be tight for all systems. In fact, in our paper
also stated that K. Yae and D. Inman’s response bounds give
paper~@5#! are in some cases better than ours. But in contrary
Mr. Shahruz we think that improvements on theresponse bounds
are meaningful and do not consider only theamplitude boundsto
be important. Mr. Shahruz stated that our response bounds
neither easily computable nor are tight. We hope that we h
been able to contribute to this interesting field of research and
in the future more easily computable and tighter response bou
will be developed.
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Discussion: ‘‘An Energy Method for
Analyzing Magnetoelastic Buckling and
Bending of Ferromagnetic Plates in
Static Magnetic Fields’’ „Yang, W.,
Pan, H., Zheng, D., and Cai, Z.,
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pp. 913–917…

You-He Zhou
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Gansu 730000, P. R. China

The authors gave an energy method to analyze the magn
elastic buckling and bending of ferromagnetic plates in differ
static magnetic fields. The elastic strain energy of Eq.~2! em-
ployed in this paper is for the bending of the beam-type plate. A
in the derivation of magnetic energy of Eq.~5!, the effect of end
edges on magnetic fields is not taken into account. After the l
gitudinal and transverse demagnetizing factorNl andNh are cal-
culated by Eqs.~12!–~13!, respectively, the expressions of critic
field Bcr and bending deformationd at free end are formulated b
Eqs. ~14! and ~17!, respectively. In this approach, the effect
width, denoted byw here, is considered only in the demagnetizi
factors but not in the deformation. If a rectangular ferromagne
plate under consideration is constrained by simple or clam
supports along the edges normal to the direction of width, i
possible that the same results for the magnetoelastic interac
will be obtained sinceNl andNh are independent on the bounda
conditions. In other words, the results given in this paper
independent upon the support conditions of the edges along
longitudinal direction, which is obviously in contradiction to th
practical problems. When the width of a rectangular plate
creases to infinite, from the theory of plates, we know that
deflection of the plate approaches to that of a correspondingbe
000 by ASME SEPTEMBER 2000, Vol. 67 Õ 637
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type plate. Whenx is very large, e.g., 103 order in Moon and Pao
@1# to this case, the condition 1/x!Nl51 is satisfied (Nl51 may
be got by Eq.~12! when w→`!. According to Eq.~14a!, how-
ever, it is found that the critical magnetic fieldB̄cr for this case of
cantilevered plates in transverse magnetic fields approaches
finite. This results in contradiction to the finite critical magne
fields given in literature to the same problem, e.g., Moon and
@1#, Zhou et al.@2#, and Zhou and Zheng@3# which are in agree-
ment with the experimental data~@1,4#!. For the prediction of
bending of the plate in this paper, it is found by Eq.~17! and Fig.
3 that the incident anglea of the magnetic field does not influenc
the critical magnetic fieldBcr of the magnetoelastic instability
This result is also in contradiction to the conclusion given in
literature using the imperfect sensitive analysis in Popelar@5# and
the numerical analysis in Zhou et al.@2#. In fact, both the experi-
mental measurement~@1,6#! and theoretical research display a fa
that the critical magnetic field of a cantilevered ferromagne
plate in transverse magnetic field is sensitive to the imperfec
incident angle of misalignment or oblique magnetic field. Tha
one of reasons why the theoretical predictions for the perfect c
of the cantilevered plate in transverse magnetic field~@1,3,7# for
example! are almost higher than their experimental data~@2#!. For
the case of a ferromagnetic plate in longitudinal magnetic fie
the authors gave a differential Eq.~20! which indicates that there
is neither bend nor buckle. The authors did not give a compar
of their theoretical prediction and the experimental data to
increasing of natural frequency of the considered plate~@8#!. Zhou
and Miya @9# successfully gave a theoretical prediction of th
problem. For the general model of magnetoelastic interaction
ferromagnetic plate structures and bodies in arbitrary magn
fields, by which the experimental phenomena of magnetoela
buckling, bending and increasing of natural frequency can be
638 Õ Vol. 67, SEPTEMBER 2000
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scribed, it can be found in Zhou and Zheng@10,11#. It is obvious
that these recent researches of magnetoelastic interaction d
support the opinion of authors: ‘‘It seems that no further progr
has been made in theoretical analysis since the Moon-Pao th
was presented.’’
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